
Pattern Recognition 145 (2024) 109976

A
0

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Learning node representations against perturbations
Xu Chen a,b, Yuangang Pan c, Ivor Tsang b,c, Ya Zhang a,∗

a Shanghai Jiao Tong University, Shanghai, China
b University of Technology Sydney, Sydney, Australia
c Center for Frontier AI Research, Agency for Science Technology, Singapore

A R T I C L E I N F O

Keywords:
Graph neural networks
Node representation learning
Smoothness
Stability
Identifiability

A B S T R A C T

Recent graph neural networks (GNN) has achieved remarkable performance in node representation learning.
One key factor of GNN’s success is the smoothness property on node representations. Despite this, most GNN
models are fragile to the perturbations on graph inputs and could learn unreliable node representations. In this
paper, we study how to learn node representations against perturbations in GNN. Specifically, we consider that
a node representation should remain stable under slight perturbations on the input, and node representations
from different structures should be identifiable, which two are termed as the stability and identifiability on node
representations, respectively. To this end, we propose a novel model called Stability-Identifiability GNN Against
Perturbations (SIGNNAP) that learns reliable node representations in an unsupervised manner. SIGNNAP
formalizes the stability and identifiability by a contrastive objective and preserves the smoothness with existing
GNN backbones. The proposed method is a generic framework that can be equipped with many other backbone
models (e.g. GCN, GraphSage and GAT). Extensive experiments on six benchmarks under both transductive
and inductive learning setups of node classification demonstrate the effectiveness of our method. Codes and
data are available online: https://github.com/xuChenSJTU/SIGNNAP-master-online
1. Introduction

Learning node representations for graphs is an important research
topic that has great promise in a variety of areas. In recent years,
it has been studied by two main methods: the network embedding
based methods and the graph neural network (GNN) based methods.
The network embedding based methods such as DeepWalk [1] and
Node2Vec [2] mainly use the statistical random walks on graphs by a
language model. DeepWalk and Node2Vec benefit the learning of node
representations on graphs while rely on high-quality random walks.
On the other hand, inspired by the graph convolutional theory and
deep learning, GNN has emerged as one crucial technique for node
representation learning on graphs. The concept of GNN was firstly
proposed in [3]. Later, ChebNet [4], introduces a fast localized convo-
lution approach on graphs in spectral domain. Inspired by the idea that
high-order convolutions can be built by stacking multiple convolutional
layers, graph convolutional network (GCN) [5] simplifies ChebNet with
multiple stacked graph convolutional layers where each layer is one-
hop convolution. GCN also connects the spectral graph convolution
with information propagation, which encourages the following design
of GNN models [6,7].

A key characteristic of GNN is smoothing which aggregates the
features of a node and its nearby neighbors [8], enforcing smoothness

∗ Corresponding author at: Shanghai Jiao Tong University, Shanghai, China.
E-mail address: ya_zhang@sjtu.edu.cn (Y. Zhang).

on node representations. However, most GNN models are fragile to
the perturbations on the input and learn unreliable node represen-
tations [9,10]. Studying how to learn node representations against
perturbations in GNN is a promising topic. When learning against
perturbations, a node’s representation should be stable to the slight
perturbations on graph inputs, which can be termed as the stability
of node representations. Meanwhile, in order to emphasize the graph
signals against perturbations, nodes of different structures should have
identifiable representations, i.e. the identifiability of node representa-
tions. In Fig. 1, we provide an example to illustrate the smoothness,
identifiability and stability for node representations on graphs. Designing
a model that simultaneously enforces the three properties is important
for node representation learning on graphs. However, there are several
difficulties: (1) The inappropriate way of constructing perturbations
may introduce bias in stability and identifiability estimation. (2) How
to formulate the optimization objective of stability and identifiability
determines the estimation quality.

In this paper, we propose a new model named Stability-Identifiability
GNN Against Perturbations (SIGNNAP) to learn reliable node repre-
sentations on graphs. Specifically, the stability and identifiability are
interpreted as high similarity for representations of the same node with
vailable online 18 September 2023
031-3203/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.patcog.2023.109976
Received 4 October 2021; Received in revised form 22 May 2023; Accepted 13 Sep
tember 2023

https://www.elsevier.com/locate/pr
http://www.elsevier.com/locate/pr
https://github.com/xuChenSJTU/SIGNNAP-master-online
mailto:ya_zhang@sjtu.edu.cn
https://doi.org/10.1016/j.patcog.2023.109976
https://doi.org/10.1016/j.patcog.2023.109976
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109976&domain=pdf


Pattern Recognition 145 (2024) 109976X. Chen et al.
Fig. 1. An example to illustrate the smoothness, stability and identifiability of node representations on graphs. For an anchor node 𝑣0, let 𝑣1 be a relevant node and 𝑣6 be an
irrelevant node. Here, different sub-neighbors refer to different variants of the original neighbors under slight perturbations (e.g. drop edge). A reliable GNN model should preserve
the smoothness (i.e. the embeddings of relevant nodes (𝑣0 and 𝑣1) are close to each other), the stability (i.e. the representations of 𝑣0 is stable to slight perturbations) and the
identifiability (i.e. the embeddings of irrelevant nodes (𝑣0 and 𝑣6) are distant from each other).
different perturbations and low similarity for representations of differ-
ent nodes, respectively, which is formulated as a contrastive objective
function. In SIGNNAP, we study several general perturbations on edges
or node attributes with explicit distributions so that the contrastive
objective can marginalize it to avoid biased stability and identifiability
estimation. More importantly, the proposed model is generic and
can be equipped with different GNN backbones such as GCN [5],
GraphSage [7] and GAT [6]. By optimizing the objective in our model,
we show that we can learn more reliable node representations that
benefit the downstream node classification task. With the stability and
identifiability, we empirically show that the model has better ability of
preventing the over-smoothing and over-fitting problem on graphs. The
contributions are summarized as follows:

• To learn node representations against perturbations in GNN, we
advocate to guarantee the stability and identifiability property and
develop a novel model named SIGNNAP that learns reliable node
representations in an unsupervised manner. The model is generic
and can be equipped with many popular GNN backbone models
for boosted performance.

• We conduct extensive experiments on six benchmarks under both
transductive and inductive learning setups. The results show that
SIGNNAP has better ability of preventing the over-smoothing
and over-fitting issue and show superior representation learning
performance.

2. Related work

Recent progress of node representation learning on graphs is mainly
categorized into two groups: network embedding and GNN.

Network Embedding: Network embedding arises as one hot re-
search topic to learn representative node embeddings for a given net-
work. Various methods have been proposed for network embedding.
For example, inspired by the skip-gram model for word representation
in Natural Language Processing (NLP), LINE [11] defines first-order
and second-order proximity to describe the context of a node and
trains node embeddings via negative sampling. Node2Vec [2] extends
DeepWalk by designing a biased random walk to control the Bread First
Search (BFS) and Deep First Search (DFS). These methods rely much on
high-quality random walks and are labor-consuming because of care-
fully designed sampling strategies and fine-tuned hyper-parameters.

Graph Neural Networks (GNN): Inspired by the success of con-
volution on images in Euclidean space, researchers tried to define the
convolution on graphs in non-Euclidean space. In ChebNet [4], a fast
and localized convolution filter is defined on graphs in spectral domain.
In [12], the authors proposed graph convolutional networks (GCN)
which utilizes a localized first-order approximation of the convolution
in ChebNet. GCN connects the spectral graph convolution to informa-
tion propagation, and broadens the way of other GNN models such as
2

GraphSage [13] and graph attention networks (GAT) [14]. Meanwhile,
some works [15] reveal that the key of GCN’s success is its smoothing
characteristic that aggregates node features from the nearby neighbors.
Although the smoothing characteristic has put forward GNN’s progress,
when stacking too many layers, the GNN model usually faces the over-
smoothing problem where all node representations converge to the
same subspace and are unidentifiable from each other. Accordingly,
ResGCN [16] introduces residual connections in GCN. DropEdge [10]
proposes to randomly drop edges with a certain ratio before graph
convolutions. These GNN models mainly focus on how to better enforce
the smoothness property.

Perturbations in GNN: Employing perturbations to learn a robust
GNN model has widely appeared in graph attack and defense. For ex-
ample, both [17,18] explore the perturbations on edges to make attack
and defense on graphs. In particular, [17] analyzes the attack from an
optimization perspective and proposes a gradient based model that can
conduct both edge addition and deletion. [18] explores the attacks by
modifying the combinatorial structure of data and further proposes a
reinforcement learning based model that learns a generalizable attack
policy.

Although SIGNNAP also employs perturbations, it is fundamentally
different from the graph attack and defense works. (1). Graph attack
aims to attack a target node and change its prediction labels, and
graph defense targets to keep the prediction labels unchanged. While
SIGNNAP targets to learn reliable node representations in an unsuper-
vised manner. (2). Graph attack involves techniques such as adversarial
learning. While SIGNNAP is based on the theory of marginalizing noise
and contrastive learning (CL).

Contrastive Learning and GNN: There are some parallel works in-
corporating contrastive learning with GNN. For instance, DGI [19] max-
imizes the mutual information between a node representation and the
high-level graph representation by contrastive learning. CMV [20] ex-
tends DGI and builds contrastive signals between node representations
and the graph representation in a multi-view formulation. GMI [21]
proposes to estimates the mutual information (MI) in DGI by de-
composed parts. By incorporating random walking sampling and con-
trastive learning, GCC [22] builds contrastive signals between sampled
multi-view graphs. GRACE [23] corrupts both the graph structures
and node attributes to generate two views and uses all other nodes
from two augmentation views as negative pairs in the InfoNCE objec-
tive function. GCA [24] designs adaptive augmentation on the graph
topology and node attributes to incorporate various priors for topo-
logical and semantic aspects of the graph. Some works extends the
negative-sampling free CL models from vision domain to graph do-
main. For example, BGRL [25] extends BYOL [26], a popular self-
supervised learning method in computer vision, to graphs. BGRL in-
cludes carefully-designed tricks, such as stop gradient, non-symmetric
networks and momentum encoders, to avoid degenerate solutions. Fol-
lowing Barlow Twins [27], G-BT [28] utilizes a cross-correlation-based



Pattern Recognition 145 (2024) 109976X. Chen et al.
Fig. 2. The framework of our Stability-Identifiability GNN Against Perturbations (SIGNNAP).
loss instead of the non-symmetric network in BGRL. There are some
other works that concentrate on learning graph-level representations
such as [29,30], which are different to our node-level learning case and
we would not introduce more here.

Although these methods also utilize contrastive learning, there are
key differences between them and our SIGNNAP. DGI, CMV and GMI
formalize the contrastive learning between a node representation and
the graph representation. In this case, they try to keep more high-
order information of nodes and achieve better smoothness. Instead,
SIGNNAP contrasts the representations of nodes, aiming to maintain
the stability and identifiability against perturbations. GCA specifically
investigates adaptive augmentation strategies to construct positive and
negative pairs in graph CL models, which is orthogonal to our work.
The negative-sampling free graph CL models (i.e. BGRL and G-BT)
usually suffer from degenerate solutions and thus require carefully
designed learning tricks. By contrast, the learning process of CL with
negatives samples is usually more stable and reliable to reach satisfying
performance. Compared to GCC, SIGNNAP has different motivations,
methodology and different results, which would be demonstrated later.

3. Method

The problem of node representation learning on graphs is formu-
lated as follows. Given an undirected graph  = ( , 𝐴),  = {𝑣𝑖|1 ≤ 𝑖 ≤
𝑁} represents nodes in the graph and 𝐴 ∈ R𝑁×𝑁 denotes the adjacent
matrix where 𝐴𝑖𝑗 = 1 indicates node 𝑖 and node 𝑗 are connected
while 𝐴𝑖𝑗 = 0 means not. When the nodes have attributes, we denote
𝑋 ∈ R𝑁×𝐹 as the attribute matrix, where 𝐹 is the attribute dimension.
The goal of node representation learning on graphs is to encode nodes
into representative embeddings. In SIGNNAP, we use popular GNN
backbones to guarantee the nice smoothness property. The stability and
identifiability are maintained by a contrastive objective function. The
general architecture of SIGNNAP is shown in Fig. 2.

3.1. Stability by edge perturbations

To achieve the stability, an intuitive way is to enforce a node
representation from the slightly changed input to be close with the true
one. However, it is non-trivial to obtain the true one. Based on [31], we
can achieve the stability by marginalizing a perturbation distribution on
the original samples.

To clarify our method, given an arbitrary anchor node 𝑣0 and a
perturbation distribution 𝑝(𝜖), we can obtain the node representation
𝑧0 by reparameterizing its true posterior 𝑞(𝑧0|𝑣0) with a differentiable
transformation 𝑓𝜃(𝜖, 𝑣0) of a perturbation variable 𝜖:

𝑧0 = 𝑓𝜃(𝜖, 𝑣0) 𝑤𝑖𝑡ℎ 𝜖 ∼ 𝑝(𝜖) (1)

In Eq. (1), enforcing the stability among multiple 𝑧0 with different 𝜖
is computational-inefficient in each step. Instead, we employ an equiv-
alent manner which enforces the stability between every two random
3

samples 𝑧10, 𝑧
2
0 from 𝑓𝜃(𝜖, 𝑣0) by sampling two 𝜖 independently. Since

learning on graphs cares more about structures, here we use Bernoulli
distribution on edges as 𝑝(𝜖). In particular, if we denote the original
neighbors of 𝑣0 as 0, we randomly drop edges of 0 with ratio 𝜌
to have different sub-neighbors of 𝑣0. In this case, 𝑝(𝜖) is represented
as 𝑝(𝜖; 𝜌). Assuming 𝑓𝜃 is a GNN backbone that ensures the smoothness
property, we have:

𝑧10 = 𝑓𝜃(𝜖1,0), 𝑧20 = 𝑓𝜃(𝜖2,0) 𝑤𝑖𝑡ℎ 𝜖1, 𝜖2 ∼ 𝑝(𝜖; 𝜌) (2)

where 𝑧10, 𝑧
2
0 are the anchor node’s representations from two different

sub-neighbors by corrupting 0 independently. Other perturbation
distributions may have different effects. The effects of other common
perturbations including perturbations on node attributes 𝑋 are studied
in the experiments. Note that we mainly study perturbations with
explicit distributions here to explore the general case of learning node
embeddings against perturbations. More complicated types such as
task-specific perturbations or generated perturbations are beyond the
scope of this work and could be explored in future.

3.2. Combating perturbations by stability and identifiability

In order to combat the perturbations for learning node represen-
tations, a typical way is to make sure a node representation remains
stable under slight perturbations, i.e. the stability. Besides, we propose
to emphasize the original graph signals against perturbations by en-
forcing nodes with different structures are identifiable in latent space,
i.e. the identifiability. In our model, the stability and identifiability are
interpreted as high similarity for representations of the same node
with different perturbations and low similarity for representations of
different nodes, respectively. Since contrastive learning has been widely
proved as a good way to achieve the pair-similarity optimization, we
propose to use a contrastive loss to formalize the two properties. Specif-
ically, we denote (𝑧10, 𝑧

2
0) as a positive pair. If 𝑧2𝑗 is a node representation

not belonging to 𝑣0 (i.e. 𝑗 ≠ 0), then (𝑧10, 𝑧
2
𝑗 ) is a negative one. Then the

contrastive objective is shown as:

1 = −E{𝑧10 ,𝑧
2
0 ,𝑧

2
𝑗 |
𝐾
𝑗=1}

[

log
ℎ𝜙(𝑧10, 𝑧

2
0)

∑𝐾
𝑗=0 ℎ𝜙(𝑧

1
0, 𝑧

2
𝑗 )

]

(3)

where ℎ𝜙 is a score function that is high for positive pairs and low
for negative pairs. 𝐾 indicates the sampling size of negative pairs.
Note that the expectation on {𝑧10, 𝑧

2
0, 𝑧

2
𝑗 |

𝐾
𝑗=1} in Eq. (3) marginalizes

the perturbation distribution in Eq. (2), which facilitates the unbiased
stability estimation. Through the contrastive objective in Eq. (3), we
push the positive pairs 𝑧10 and 𝑧20 are closer than the negative pairs 𝑧10
and 𝑧2𝑗 in the embedding space. We implement the score function as
the Gaussian potential kernel (also known as the Radial Basis Function
(RBF) kernel).

ℎ (𝑧1, 𝑧2) = 𝑒𝑧
1
0
𝑇 𝑧20∕𝜏 (4)
𝜙 0 0



Pattern Recognition 145 (2024) 109976X. Chen et al.



l
t

Table 1
The statistics of six benchmarks.

#nodes #edges #density #classes #features #label rate Train/Val/Test

Pubmed 19,717 44,324 0.01% 3 500 0.30% 60/500/1000
Facebook 22,470 170,823 0.03% 4 4714 0.35% 80/120/rest
Coauthor-CS 18,333 81,894 0.02% 15 6805 1.60% 300/450/rest
Amazon-Com 13,752 245,861 0.13% 10 767 1.45% 200/300/rest
Amazon-Pho 7650 119,081 0.20% 8 745 2.09% 160/240/rest
Coauthor-Phy 34,493 247,962 0.02% 5 8415 57.98% 20,000/5000/rest
where 𝜏 is a temperature to control the distribution of ℎ𝜙. Among a
general class of kernels, the RBF kernel can well distribute the nega-
tive node representations uniformly in the embedding space for good
identifiability. Besides, with the perturbations defined in Section 3.1, the
stability in SIGNNAP is equivalent to the isomorphism between two
sub-graphs [32]. Through the above analysis, we conclude that the
contrastive objective in our SIGNNAP matches the two properties well.
Similarly, by substituting the anchor representation 𝑧10 in Eq. (3) with
𝑧20, we have:

2 = −E{𝑧20 ,𝑧
1
0 ,𝑧

1
𝑗 |
𝐾
𝑗=1}

[

log
ℎ𝜙(𝑧20, 𝑧

1
0)

∑𝐾
𝑗=0 ℎ𝜙(𝑧

2
0, 𝑧

1
𝑗 )

]

(5)

where 2 is a symmetric form of 1 and can help to stabilize the
training.

3.3. Objective function

By summing Eqs. (3) and (5) up, we have our final objective
function:

min
𝜃

 = 1 + 2 (6)

where 𝜃 is the network parameter from the GNN backbone. Since the
expectations in Eqs. (3) and (5) do not have analytic formulations,
we instead resort to unbiased Monte Carlo estimation to approximate
the two equations. In the objective, 𝜌 and 𝐾 control the variations of
stability and identifiability of the inputs, which is empirically analyzed
with experiments in the experiments. Moreover, we demonstrate that
the proposed objective has connections with the mutual information
between 𝑧10 and 𝑧20, which is shown as:

Lemma 1. The proposed objective  is an estimator of the mutual
information between 𝑧10 and 𝑧20, showing that:

(𝑧10, 𝑧
2
0) ≥ log(𝐾) −  (7)

therefore minimizing  actually maximizes the lower bound of (𝑧10, 𝑧
2
0).

The lower bound becomes tighter when 𝐾 becomes larger.

Details about Lemma 1 is demonstrated in Appendix A.1. Minimiz-
ing  maximizes the mutual information between 𝑧10 and 𝑧20 towards a
direction where the positive pairs are more similar or dependent than
the negative ones.

3.4. Acceleration strategies for training

DropEdge Sampling Strategy: If we denote the number of training
epochs as 𝑇 , the complexity of constructing various sub-neighbors of
𝑁 nodes is (𝑁𝑇 ). In our implementation, following DropEdge, we
randomly drop edges on the adjacent matrix 𝐴 one time for each epoch
and then feed the corrupted adjacent matrices 𝐴1 and 𝐴2 instead of

1
0 and  2

0 into the model training. Then the complexity is reduced to
(𝑇 ) and dropping edge is accelerated. To further accelerate training,

ike other contrastive loss based algorithms (e.g. DGI and CMV), we set
he sampling method of negative pairs as the random sampling.
Memory Bank Strategy: In order to efficiently sample 𝐾 negative

nodes for , we follow the memory bank strategy in [33]. In particular,
4

the latent features of all nodes are stored in memory and synchronously n
updated after loss back propagation. It is also worthwhile to mention
that the memory bank strategy here requires to save the representations
of all nodes in learning, which may bring a memory challenge when the
graph is extremely large.

4. Experiments and analysis

4.1. Experiment setups

4.1.1. Dataset description
We conduct the experiments on six benchmarks varying in graph

types and sizes.1 Pubmed is a widely used citation network. Face-
book [34] is a web page dataset where nodes are official Facebook
pages and the edges are mutual connections between sites. Coauthor-
CS and Coauthor-Phy [35] are two coauthor datasets based on the
Microsoft Academic Graph from the KDD Cup 2016 challenge. Amazon-
Com (i.e. Amazon-Computer) and Amazon-Pho (i.e. Amazon-Photo) are
two segments of the Amazon co-purchase graph [36], where nodes
are items and edges indicate two items are frequently co-purchased
together. Each dataset has raw node features and class labels, following
mainstream works [1,20], we perform the node classification task to
make evaluation. For Pubmed, Facebook, Coauthor-CS, Amazon-Com
and Amazon-Pho, we conduct the transductive learning where all nodes
and their raw features are accessible during training. For Coauthor-Phy,
we conduct the inductive learning where the test nodes are not seen
during training.

Different dataset splits on the node classification can have dif-
ferent evaluation values. The way of data splitting used in many
graph CL works (i.e., DGI [19], CMV [20], GCC [22]) originates from
the semi-supervised works of graph representation learning. Whereas
some graph CL works, e.g., (GRACE [23], BGRL [25], G-BT [28],
GCA [24]), utilize a random splitting of the nodes into (80%-10%–10%)
train/validation/test set. Usually, compared to that in the former way,
the latter way of splitting would favor the training, except for Coauthor-
Phy in inductive learning setting. In order to make comparison of
different models, by following common graph learning works [19,20],
we use the widely-recognized semi-supervised setting of data split-
ting. On Pubmed, the train/val/test nodes are the same as previous
works [12,19]. For Facebook, Coauthor-CS, Amazon-Com and Amazon-
Pho, we follow the setting in [35] where 20 nodes of each class are
randomly sampled as the train set and 30 nodes of each class are
randomly sampled as the validation set and the rest is the test set. For
Coauthor-Phy in inductive learning, we randomly sample 20,000 nodes
as train set and 5000 nodes as validation set and the rest as test set. The
dataset statistics are shown in Table 1.

4.1.2. Baselines
We make the comparison of our model with the following super-

vised models: GCN [12], ResGCN [16], JKNet [37], GraphSage [7],
GAT [38], DropEdge [10] and other unsupervised models: DeepWalk
[1], Node2vec [2], ARWMF [39], DGI [19], CMV [20], GCC [22],
GRACE [23], BGRL [25], G-BT [28] and GCA [24]. Among the unsu-
pervised models, BGRL and G-BT are learned without negatives while
the others are not.

1 Note that Reddit dataset is quite large and is not included here since we do
ot have much computation resources. Instead, we include other benchmarks.



Pattern Recognition 145 (2024) 109976X. Chen et al.

s
w
m
d

4

4

c
T
t
d
F

u
c
a
g
w
i
b
b
m
q
e

Table 2
Classification accuracy (%) on different benchmarks. Standard deviation is reported in percentage format. The best value for unsupervised models is emphasized in bold. The second
value for unsupervised models is emphasized with underline. ‘‘-’’ means the method does not support this setting. We also show the average rank of unsupervised models on the
six benchmarks. Lower rank score means better performance.

Method Transductive Inductive Average rank

Pubmed Facebook Coauthor-CS Amazon-Com Amazon-Pho Coauthor-Phy

Supervised

GCN 79.20(±0.38) 66.37(±0.24) 92.01(±0.14) 81.18(±0.27) 85.82(±0.30) 93.35(±0.02)

/

ResGCN 77.74(±0.39) 67.69(±0.60) 92.84(±0.24) 81.10(±0.70) 87.21(±0.50) 95.88(±0.03)
JKNet 77.84(±0.11) 68.09(±0.75) 92.76(±0.22) 80.91(±0.83) 87.25(±0.50) 95.56(±0.15)
GraphSage 79.02(±0.31) 69.62(±0.38) 92.60(±0.16) 82.10(±0.22) 87.60(±0.34) 95.28(±0.16)
GAT 78.71(±0.21) 72.24(±0.07) 91.23(±0.06) 81.85(±0.73) 87.02(±1.51) 93.96(±0.04)
DropEdge(GCN) 78.82(±0.29) 66.10(±0.19) 92.12(±0.12) 81.42(±0.21) 85.58(±0.13) 93.32(±0.02)
DropEdge(ResGCN) 77.52(±0.38) 67.30(±0.75) 93.01(±0.16) 81.50(±0.74) 87.46(±0.27) 95.89(±0.04)
DropEdge(JKNet) 77.85(±0.16) 67.68(±0.54) 92.74(±0.20) 81.70(±0.43) 87.01(±0.42) 95.77(±0.02)
DropEdge(GraphSage) 78.53(±0.31) 69.25(±0.30) 92.77(±0.08) 82.11(±0.30) 87.64(±0.40) 95.41(±0.30)
DropEdge(GAT) 78.90(±0.30) 71.57(±0.21) 91.32(±0.14) 82.20(±0.50) 87.59(±0.73) 93.80(±0.13)

Unsupervised

DeepWalk 65.59(±1.43) 63.04(±1.32) 77.81(±0.86) 76.93(±0.73) 81.50(±0.82) 91.17(±0.33) 9.83
Node2Vec 70.34(±0.69) 69.69(±0.77) 79.93(±0.62) 75.49(±1.08) 82.21(±0.67) 91.43(±0.73) 10.0
ARWMF 78.03(±0.85) 61.97(±0.94) 86.02(±0.82) 68.34(±1.54) 78.35(±0.56) – –
DGI 79.24(±0.50) 69.53(±1.25) 91.41(±0.12) 71.41(±0.85) 79.34(±0.66) 93.26(±0.35) 8.66
CMV 80.10(±0.10) 67.24(±0.13) 90.73(±0.71) 67.15(±1.98) 79.54(±1.47) 91.49(±0.41) 9.83
GCC 80.60(±0.45) 70.36(±0.53) 91.76(±0.12) 74.18(±1.02) 83.60(±0.52) 93.97(±0.16) 5.5
GRACE 78.10(±0.10) 65.81(±0.27) 90.20(±0.33) 69.32(±0.78) 66.48(±0.30) 72.90(±0.18) 12.16
BGRL 71.01(±0.42) 62.42(±0.21) 89.31(±0.45) 81.72(±0.86) 86.02(±0.53) 75.85(±0.20) 9.0
G-BT 80.04(±0.63) 64.14(±0.47) 90.38(±0.62) 75.17(±1.05) 84.49(±0.66) 74.05(±0.25) 8.83
GCA 80.02(±0.18) 71.52(±0.34) 90.97(±0.29) 77.30(±0.58) 85.50(±0.40) 73.09(±0.21) 6.5
SIGNNAP(JKNet) 80.82(±0.48) 68.77(±1.31) 91.48(±0.18) 73.91(±0.50) 83.55(±0.29) 92.82(±0.08) 7.0
SIGNNAP(GAT) 80.93(±0.40) 78.39(±0.64) 90.14(±0.37) 75.11(±0.47) 89.84(±0.26) 92.34(±0.03) 4.5
SIGNNAP(ResGCN) 77.34(±0.53) 71.21(±0.29) 92.01(±0.19) 77.24(±0.28) 84.09(±0.21) 93.43(±0.27) 5.16
SIGNNAP(GCN) 81.34(±0.54) 71.13(±0.16) 92.35(±0.27) 74.65(±0.16) 85.74(±0.25) 92.76(±0.10) 4.66
SIGNNAP(GraphSage) 81.81(±0.20) 71.55(±0.48) 91.21(±0.24) 78.49(±0.08) 86.26(±0.43) 93.33(±0.02) 2.83
4.1.3. Parameter settings
We implement SIGNNAP with Pytorch on a machine with one

Nvidia 1080-Ti GPU. For GraphSage, GAT and DGI, we use the codes
from a famous GNN library- DGL.2 For other baselines, we use the codes
released by the authors. In SIGNNAP, we construct the positive nodes
with the same drop ratio 𝜌 = 0.3 like DropEdge [10] and randomly
ample 𝐾 = 1024 negative pairs. We set the learning rate as 0.001
ith 5000 iterations and the temperature 𝜏 as 0.1. For unsupervised
ethods, we train a one-layer linear classifier for evaluation. More
etailed parameter settings are summarized in Appendix B.1.

.2. Performance comparison

.2.1. Node classification performance
Following mainstream works [1,11,19,20,40], we conduct the node

lassification task to verify the effectiveness of the proposed method.
he results on different benchmarks are summarized in Table 2. In
his table, we report the mean classification accuracy (with standard
erivation) on the test nodes after 5 runs with different random seeds.
rom the table, we have the following observations.
(1). The proposed method generally performs better than recent

nsupervised models and even exceeds the supervised models in some
ases. On Pubmed, SIGNNAP(GCN) reaches a 2.10% gain over DGI and
0.74% gain over GCC. With the same encoder, SIGNNAP(GCN) can

enerally achieve a better rank score of 4.66, compared to GRACE
ith 12.16, G-BT with 8.83, GCA with 6.5 and GCC with 5.5, which

llustrates that the improvement is from the model itself instead of the
ackbone. (2). For the inductive learning on Coauthor-Phy, we can see
oth DGI, GCC and SIGNNAP perform a bit worse than the supervised
ethods. A possible reason is that the label rate of Coauthor-Phy is

uite large compared to other datasets. The supervised models are not
asy to be over-fitting with a large label rate. (3). It is interesting

to find that SIGNNAP(GraphSage) not always performs better than
SIGNNAP(GCN). This is understandable since different datasets have

2 https://www.dgl.ai/
5

different distributions that favor different backbones. In our experi-
ments, we use these common backbones to demonstrate SIGNNAP’s
flexibility in use.

4.2.2. On preventing over-smoothing
As discussed in [8], when stacking too many GCN layers, the over-

smoothing issue arises which means the top-layer node embeddings
converge to the same subspace and become unidentifiable from each
other. As SIGNNAP enforces the identifiability property which tries to
learn different embeddings for nodes with different structures, it is
curious to see if SIGNNAP has better ability of preventing the over-
smoothing issue. In this experiment, we visualize the node embeddings
by t-SNE when increasing the depth of GCN layers. The results of
different models are shown in Fig. 3.

From this figure, we can see that: (1). When increasing the number
of GCN layers (e.g. 10-layer), SIGNNAP(GCN) shows more identifiable
node embeddings while baseline models easily have collapsed sub-
space. (2). DropEdge(GCN) can alleviate the over-smoothing problem
in GCN, while it does not perform better than SIGNNAP(GCN). The con-
trastive objective in SIGNNAP(GCN) can work with DropEdge together
and show better performance. (3). Note that the embeddings of GCN
and DropEdge(GCN) are learned in a supervised manner while those of
DGI and SIGNNAP(GCN) are learned in an unsupervised manner, so the
supervised models may have better performance than the unsupervised
ones when the number of layers is 2 or 4.

4.2.3. On preventing over-fitting
In this experiment, we investigate the over-fitting problem of dif-

ferent models. We show the results of different training layers, train
accuracy and validation accuracy of different methods in Fig. 4.

By analyzing the results in Fig. 4, we make the following sum-
marization: (1). From Fig. 4(a), we see that the proposed SIGNNAP
has improvement over baseline models. Especially when the number
of layer increases from 2 to 10, with nearly four times increased
learning parameters, the accuracy of baselines drops from 67% to
nearly 30%, while the accuracy of SIGNNAP(GCN) drops from 72%
to nearly 60%. (2). Besides, from Fig. 4(b) and (c), we observe that
the supervised models (GCN and DropEdge) have a severe over-fitting

https://www.dgl.ai/


Pattern Recognition 145 (2024) 109976X. Chen et al.
Fig. 3. The results of over-smoothing with different number of GCN layers on Pubmed. The number of layers is 2,4,6,8,10 from left to right in each row. We show the results of
four models here to give an example. Different colors indicate different categories. Results of other methods and datasets follow similar patterns.
Fig. 4. The results of over-fitting on Facebook. (a) shows the comparison results of different training layers. (b) indicates the train accuracy of different methods. (c) indicates the
validation accuracy of different methods. The accuracy curves of unsupervised models are plot based on the one-layer linear classifier. We show the results of several baselines
here to illustrate the idea. Results of other methods and datasets follow similar patterns.
problem. For SIGNNAP, we can see that although it has the lowest train
accuracy, it shows the best validation accuracy. It is mainly because
SIGNNAP learns more stable node representations, namely the GNN
feature extractor has less variance and has better generalization ability.

4.3. Empirical results of the three properties

4.3.1. Stability of node representations
Here we conduct an experiment to show that our method learns

more stable node representations on graphs. Specifically, after we train
a model, we fix the model and add perturbations to the input by
dropping edges with 𝜌 = 0.3 ten times. In this way, for an arbitrary
node 𝑣0, we can have its ten variant inputs and their corresponding ten
node representations by the fixed model. Next, we calculate the cosine
similarity matrix 𝑆 ∈ R10×10 of these ten variants’ representations. If a
model learns stable node representations, the similarity between each
two representations should be large. Here, we sample the test nodes
6

and calculate the 𝑆 matrix of each node for four methods. For each
method, we average the 𝑆 matrices of test nodes to obtain one matrix
denoted as 𝑆. For better comparison, we apply min–max normalization
on the 𝑆 matrices and show the results in Fig. 5.

From Fig. 5, we summarize that the proposed method learns more
stable node representations. (1). DGI have many light-colored blocks,
which means the node representation is sensitive to the slight changes
on the input. (2). Compared to DGI, DropEdge(GCN) shows a better
result with deeper-colored blocks, because DropEdge(GCN) tries to
maintain the stability by assigning the same label to the input with
slight perturbations. When using the label as an agent, it is hard to
guarantee the stability on the node representations directly. Instead,
the proposed SIGNNAP explicitly imposes the stability on learned node
representations. (3). Compared to GCC, SIGNNAP shows better stability
results, because SIGNNAP can guarantee an unbiased stability estima-
tion by marginalizing the perturbation distribution. While the random



Pattern Recognition 145 (2024) 109976X. Chen et al.
Fig. 5. The representation stability comparison on Facebook. The mean value of the normalized cosine similarity in (a) (b) (c) (d) respectively is 0.857, 0.804, 0.915 and 0.946.
Deeper color indicates larger similarity and more stability against perturbations on the input.
Fig. 6. The t-SNE comparison of learned node representations on Coauthor-CS. Note that for clear presentation, we visualize the first ten categories of nodes. (a) ‘‘Raw’’ means
the raw node features are used. (b) (c) and (d) indicate the features are learned by DGI, GCC and SIGNNAP(GCN), respectively.
walk sampling in GCC without analytic formulation may have large bias
in learning stability.

4.3.2. Smoothness and identifiability of node representations
We also conduct an experiment to show the smoothness and iden-

tifiability of learned node representations. Discussing smoothness and
identifiability without any data is hard to understand. Here we use
node categories to illustrate this by assuming that nodes from the same
category should be clustered together (i.e. smoothness) and nodes from
different categories should be discriminative (i.e. identifiability). In par-
ticular, we visualize the learned node representations on Coauthor-CS
by t-SNE in Fig. 6.

From Fig. 6(a), it is clear that raw features are easily overlapped
together. DGI, GCC and SIGNNAP(GCN) show better performance by
identifying nodes from different clusters. Although GCC has similar
loss formulation as SIGNNAP, it still shows inferior performance to
SIGNNAP(GCN). We consider it is caused by the differences between
them. (1). GCC aims to learn the structural similarity and transferability
in latent space by a pertaining task, so as to benefit downstream tasks.
By contrast, SIGNNAP concentrates on the model’s robust represen-
tation learning under different perturbations. (2). SIGNNAP enforces
an unbiased stability and identifiability estimation by marginalizing the
perturbation distribution on original samples, while the random walk
sampling in GCC without analytic formulation may have large bias in
estimation. The better performance of SIGNNAP over GCC can also be
verified in Table 2.

4.4. Ablation study

4.4.1. Different perturbations
In the method part, we use DropEdge which is an edge removal

strategy to obtain different samples. We do not consider edge addition
here since it has a complexity of (𝑁2) and will incur much more noise
than edge removal. For any model, proper noise in training can help
it; while overwhelming noise level leads to deterioration. How to add
edges is an interesting topic but is beyond the scope of SIGNNAP here.

In addition, we can also add perturbations on node attributes to
have different samples of an anchor node 𝑣0. Thus, we further explore
the effects of different perturbations on node attributes. In particular, if
we denote the attribute vector of 𝑣0 as 𝑥0 and a perturbation vector as
𝛿, then the corrupted attribute vector can be represented as 𝑥′ = 𝑥 +𝛿,
7

0 0
where 𝛿 can be sampled from different distributions such as Gaussian
distribution. We show the results of different perturbations in Table 3.
Note that we multiply 0.01 for noise from these distributions and then
denote them as 𝛿 to adapt to the scale of normalized features. Here, we
fix the backbone as GCN for SIGNNAP to analyze the effects of different
perturbations.

From Table 3, we can see: (1). Comparing perturbations on ‘‘A’’
and ‘‘X’’, the result of ‘X‘’’ row generally has worse performance than
that of ‘‘A’’ row. A possible reason is that edges in graphs may have
more uncertainty than attributes. Enforcing stability on structures can
help the model adapt to the uncertain edges in information aggregation
and learn more robust node features. (2). Comparing perturbations on
‘‘A’’ and ‘‘A+X’’, DropEdge generally has better performance. Based on
DropEdge, adding node attribute perturbations sometimes has positive
effects while sometimes does not. It is hard to find a proper distribution
when adding perturbations on node attributes since the node attributes
are usually heterogeneous. By contrast, DropEdge matches different
graphs well and is more practical and easier for usage in practice.

4.4.2. Hyper-parameter analysis
In the proposed method, the ratio of dropping edges 𝜌 and the

sampling size 𝐾 respectively control the variations of stability and iden-
tifiability of inputs. The temperature 𝜏 in the score function controls the
similarity scale in contrastive learning. In order to explore the effects of
these hyper-parameters, we further conduct an experiment to illustrate
this. The results on Pubmed are shown in Fig. 7. From this figure,
we can summarize that: (1). In Fig. 7(a), when 𝐾 becomes too large,
there is a risk of sampling structure-similar nodes as negative pairs. In
other words, too large 𝐾 can lead to inappropriate contrastive signals
and deteriorates the quality of node representations. In general, the
empirical 𝐾 = 1024 can provide satisfied performance. (2). In Fig. 7(b),
a proper drop ratio 𝜌 tends to be around 0.5. A too small 𝜌 leads to
less variants of a node’s neighbors. A too large 𝜌 will lose too much
neighborhood information, which hinders the information propagation
on graphs. In general, 𝜌 = 0.3 is an empirical value of dropedge
technique [10]. (3). The temperature 𝜏 controls the distribution of the
score function. The method has its best performance when 𝜏 = 0.1.
Empirically, 𝜏 ≪ 0.1 will cause value explosion in networks because of
the exponential property. In summary, 𝜏 = 0.1 is an empirical value for
satisfied model performance.



Pattern Recognition 145 (2024) 109976X. Chen et al.
Table 3
The results of SIGNNAP(GCN) with different kinds of perturbations. ‘‘A’’, ‘‘X’’ and ‘‘A+X’’ respectively indicate the perturbations on structures,
node attributes or both. ‘‘Gaussian’’, ‘‘Laplace’’ and ‘‘Uniform’’ respectively indicate perturbations that are sampled from 𝑁(0, 1), 𝐿(0, 1), 𝑈 (0, 1).

Type Approach Pubmed Facebook Coauthor-CS Amazon-Com Amazon-Pho Coauthor-Phy

A DropEdge 81.34 71.13 92.35 74.65 85.74 92.76

X
Gaussian 77.82 70.70 90.11 74.17 86.26 92.03
Laplace 76.98 71.22 89.25 72.00 85.43 92.24
Uniform 77.48 67.04 87.88 67.67 83.20 92.11

A+X
DropEdge+Gaussian 80.02 71.15 91.06 72.84 85.64 92.91
DropEdge+ Laplace 77.58 71.38 90.56 72.05 86.00 92.69
DropEdge+Uniform 77.68 69.67 89.48 58.65 76.54 92.60
Fig. 7. The effect of different hyper-parameters on Pubmed. (a) indicates the sampling size 𝐾 . (b) indicates the ratio 𝜌 of dropping edges. (c) represents the temperature 𝜏 in
the score function.
5. Conclusion and future work

In this paper, we propose a novel model SIGNNAP which illustrates
the necessary properties of reliable node representations against per-
turbations on graphs. Apart from the widely-used smoothness property,
SIGNNAP contains the stability and identifiability property, which pro-
vides a new insight of learning high-quality node representations for
numerous graph algorithms. Through extensive experiments on various
benchmarks, we show that SIGNNAP prevents the over-smoothing and
over-fitting issue and learns more reliable node representations for
downstream classification task.

However, there are still some limitations of our method. For exam-
ple, the sampling method of negative pairs is random sampling, which
would lead to the risk of sampling structure-similar representations of
the anchor node. In future, we would explore how to revise the negative
sampling distribution and correct the sampling bias.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

I have shared the link to my data and code.

Acknowledgments

This work is supported by the National Key Research and Develop-
ment Program of China (No. 2019YFB1804304), SHEITC, China (No.
2018-RGZN-02046), 111 plan, China (No. BP0719010), and STCSM,
China (No. 18DZ2270700), and State Key Laboratory of UHD Video
and Audio Production and Presentation. This work is also supported
by ARC DP180100106 and DP200101328 of Australia.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.patcog.2023.109976.
8

References

[1] B. Perozzi, R. Al-Rfou, S. Skiena, DeepWalk: Online learning of social repre-
sentations, in: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14, Association for Computing
Machinery, New York, NY, USA, 2014, pp. 701–710.

[2] A. Grover, J. Leskovec, Node2vec: Scalable feature learning for networks, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2016, pp. 855–864.

[3] M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph domains,
in: Proceedings. 2005 IEEE International Joint Conference on Neural Networks,
2005, Vol. 2, 2005, pp. 729–734.

[4] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on
graphs with fast localized spectral filtering, in: Advances in Neural Information
Processing Systems, 2016, pp. 3844–3852.

[5] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, in: International Conference on Learning Representations, ICLR, 2017.

[6] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph
attention networks 1 (2), 2017, arXiv preprint arXiv:1710.10903.

[7] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large
graphs, in: Advances in Neural Information Processing Systems, 2017, pp.
1024–1034.

[8] Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks for
semi-supervised learning, in: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence and Thirtieth Innovative Applications of Artificial
Intelligence Conference and Eighth AAAI Symposium on Educational Advances
in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18, AAAI Press, 2018.

[9] S. Verma, Z.-L. Zhang, Stability and generalization of graph convolutional neural
networks, in: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 1539–1548.

[10] Y. Rong, W. Huang, T. Xu, J. Huang, DropEdge: Towards deep graph convolu-
tional networks on node classification, in: International Conference on Learning
Representations, 2019.

[11] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale
information network embedding, in: Proceedings of the 24th International
Conference on World Wide Web, International World Wide Web Conferences
Steering Committee, 2015, pp. 1067–1077.

[12] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, in: International Conference on Learning Representations, ICLR, 2017.

[13] R. Ying, R. He, K. Chen, P. Eksombatchai, W.L. Hamilton, J. Leskovec, Graph
convolutional neural networks for web-scale recommender systems, in: Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 974–983.

[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph
attention networks, in: International Conference on Learning Representations,
2018, accepted as poster.

[15] R. Zheng, W. Chen, G. Feng, Semi-supervised node classification via adaptive
graph smoothing networks, Pattern Recognit. 124 (2022) 108492.

https://doi.org/10.1016/j.patcog.2023.109976
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb1
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb1
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb1
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb1
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb1
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb1
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb1
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb2
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb2
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb2
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb2
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb2
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb3
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb3
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb3
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb3
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb3
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb4
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb4
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb4
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb4
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb4
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb5
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb5
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb5
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb7
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb7
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb7
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb7
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb7
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb8
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb8
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb8
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb8
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb8
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb8
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb8
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb8
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb8
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb9
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb9
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb9
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb9
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb9
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb10
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb10
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb10
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb10
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb10
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb11
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb11
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb11
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb11
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb11
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb11
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb11
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb12
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb12
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb12
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb13
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb13
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb13
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb13
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb13
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb13
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb13
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb14
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb14
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb14
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb14
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb14
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb15
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb15
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb15


Pattern Recognition 145 (2024) 109976X. Chen et al.
[16] G. Li, M. Muller, A. Thabet, B. Ghanem, Deepgcns: Can gcns go as deep as
cnns? in: Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 9267–9276.

[17] K. Xu, H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng, M. Hong, X. Lin, Topology
attack and defense for graph neural networks: An optimization perspective, in:
Proceedings of the 28th International Joint Conference on Artificial Intelligence,
IJCAI ’19, AAAI Press, 2019, pp. 3961–3967.

[18] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, L. Song, Adversarial
attack on graph structured data, in: J. Dy, A. Krause (Eds.), Proceedings of the
35th International Conference on Machine Learning, in: Proceedings of Machine
Learning Research, vol. 80, PMLR, 2018, pp. 1115–1124.

[19] P. Veličković, W. Fedus, W.L. Hamilton, P. Liò, Y. Bengio, R.D. Hjelm, Deep
graph infomax, in: International Conference on Learning Representations, 2019.

[20] K. Hassani, A.H. Khasahmadi, Contrastive multi-view representation learning
on graphs, in: Proceedings of the 37th International Conference on Machine
Learning, ICML ’20, JMLR.org, 2020.

[21] Z. Peng, W. Huang, M. Luo, Q. Zheng, Y. Rong, T. Xu, J. Huang, Graph
representation learning via graphical mutual information maximization, in:
Proceedings of the Web Conference 2020, ACM, 2020, pp. 259–270.

[22] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang, J. Tang, GCC:
Graph contrastive coding for graph neural network pre-training, in: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’20, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 1150–1160.

[23] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, L. Wang, Deep Graph Contrastive
Representation Learning, in: ICML Workshop on Graph Representation Learning
and beyond, 2020.

[24] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, L. Wang, Graph contrastive learning with
adaptive augmentation, in: Proceedings of the Web Conference 2021, WWW
’21, Association for Computing Machinery, New York, NY, USA, 2021, pp.
2069–2080.

[25] S. Thakoor, C. Tallec, M.G. Azar, R. Munos, P. Veličković, M. Valko, Bootstrapped
representation learning on graphs, in: ICLR 2021 Workshop on Geometrical and
Topological Representation Learning, 2021.

[26] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C.
Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al., Bootstrap your own
latent-a new approach to self-supervised learning, Adv. Neural Inf. Process. Syst.
33 (2020) 21271–21284.

[27] J. Zbontar, L. Jing, I. Misra, Y. LeCun, S. Deny, Barlow twins: Self-supervised
learning via redundancy reduction, in: International Conference on Machine
Learning, PMLR, 2021, pp. 12310–12320.

[28] P. Bielak, T. Kajdanowicz, N.V. Chawla, Graph barlow twins: A self-supervised
representation learning framework for graphs, 2021.

[29] Z. Luo, Y. Dong, Q. Zheng, H. Liu, M. Luo, Dual-channel graph contrastive
learning for self-supervised graph-level representation learning, Pattern Recognit.
139 (2023) 109448.

[30] J. Ding, R. Cheng, J. Song, X. Zhang, L. Jiao, J. Wu, Graph label prediction based
on local structure characteristics representation, Pattern Recognit. 125 (2022)
108525.

[31] M. Chen, K.Q. Weinberger, Z. Xu, F. Sha, Marginalizing stacked linear denoising
autoencoders, J. Mach. Learn. Res. 16 (1) (2015) 3849–3875.

[32] E. Hrushovski, Extending partial isomorphisms of graphs, Combinatorica 12 (4)
(1992) 411–416.

[33] Y. Tian, D. Krishnan, P. Isola, Contrastive multiview coding, Eur. Comput. Vis.
Assoc. (2020).

[34] B. Rozemberczki, C. Allen, R. Sarkar, Multi-scale attributed node embedding, J.
Complex Netw. 9 (2) (2021).

[35] O. Shchur, M. Mumme, A. Bojchevski, S. Günnemann, Pitfalls of graph neural
network evaluation, in: Relational Representation Learning Workshop, NeurIPS
2018, 2018.

[36] J. McAuley, C. Targett, Q. Shi, A. Van Den Hengel, Image-based recommenda-
tions on styles and substitutes, in: Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2015,
pp. 43–52.

[37] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, S. Jegelka, Representa-
tion learning on graphs with jumping knowledge networks, in: International
Conference on Machine Learning, ICML, 2018.

[38] X. Wang, X. He, Y. Cao, M. Liu, T.-S. Chua, KGAT: Knowledge graph atten-
tion network for recommendation, in: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &Amp; Data Mining, KDD ’19,
Association for Computing Machinery, New York, NY, USA, 2019, pp. 950–958.
9

[39] L. Chen, S. Gong, J. Bruna, M.M. Bronstein, Attributed random walk as matrix
factorization, in: Graph Representation Learning Workshop NeurIPS, 2019.

[40] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, J. Tang, Network embedding as matrix
factorization: Unifying deepwalk, line, pte, and node2vec, in: Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining, ACM,
2018, pp. 459–467.

Xu Chen received a Ph.D. degree at Cooperative Meidianet
Innovation Center in Shanghai Jiao Tong University in
2021. He also received a dual Ph.D. degree at Univer-
sity of Technology, Sydney in 2022. He has published
papers of top conferences and journals such as CVPR, IEEE
TPAMI and ACM TOIS. He is now working at Alibaba
Group. His research interests include machine learning,
graph representation learning, self-supervised learning and
recommendation systems

Yuangang Pan is working as a research scientist at A*STAR
Centre for Frontier AI Research. He completed his Ph.D.
degree in Computer Science in Mar 2020 from Univer-
sity of Technology Sydney (UTS), Australia. Before joining
A*STAR, he was a postdoctoral research associate at the
Australian Artificial Intelligence Institute at UTS. He has
authored or co-authored papers on various top conferences
and journals, such as AAAI, IEEE TIFS, IEEE TKDE, IEEE
TNNLS, ACM TOIS, MLJ, and JMLR. His research inter-
ests include Deep Clustering, Deep Generative Learning,
Differential Privacy, and Robust Ranking Aggregation.

Ivor W. Tsang (Fellow IEEE) is currently the Director of the
A*STAR Centre for Frontier AI Research, Singapore. He is
also a Professor of artificial intelligence with the University
of Technology Sydney, Ultimo, NSW, Australia, and the
Research Director of the Australian Artificial Intelligence
Institute. His research interests include transfer learning,
deep generative models, learning with weakly supervision,
Big Data analytics for data with extremely high dimensions
in features, samples and labels.

In 2013, he was the recipient of the ARC Future Fel-
lowship for his outstanding research on Big Data analytics
and large-scale machine learning. In 2019, his JMLR paper
Towards ultrahigh dimensional feature selection for Big
Data was the recipient of the International Consortium of
Chinese Mathematicians Best Paper Award. In 2020, he
was recognized as the AI 2000 AAAI/IJCAI Most Influential
Scholar in Australia for his outstanding contributions to the
field between 2009 and 2019. Recently, he was conferred
the IEEE Fellow for his outstanding contributions to large-
scale machine learning and transfer learning. He serves as
the Editorial Board for the JMLR, MLJ, JAIR, IEEE TPAMI,
IEEE TAI, IEEE TBD, and IEEE TETCI. He serves/served as
a AC or Senior AC for NeurIPS, ICML, AAAI and IJCAI, and
the steering committee of ACML.

Ya Zhang received the B.S. degree from Tsinghua Uni-
versity and the Ph.D. degree in information sciences and
technology from the Pennsylvania State University. Since
March 2010, she has been a professor with Cooperative
Medianet Innovation Center, Shanghai Jiao Tong University.
Prior to that, she worked with Lawrence Berkeley National
Laboratory, University of Kansas, and Yahoo! Labs. Her
research interest is mainly on data mining and machine
learning, with applications to information retrieval, web
mining, and multimedia analysis. She is a member of the
IEEE.

http://refhub.elsevier.com/S0031-3203(23)00674-X/sb16
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb16
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb16
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb16
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb16
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb17
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb17
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb17
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb17
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb17
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb17
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb17
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb18
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb18
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb18
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb18
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb18
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb18
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb18
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb19
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb19
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb19
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb20
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb20
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb20
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb20
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb20
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb21
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb21
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb21
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb21
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb21
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb22
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb22
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb22
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb22
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb22
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb22
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb22
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb22
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb22
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb23
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb23
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb23
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb23
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb23
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb24
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb24
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb24
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb24
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb24
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb24
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb24
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb25
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb25
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb25
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb25
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb25
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb26
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb26
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb26
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb26
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb26
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb26
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb26
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb27
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb27
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb27
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb27
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb27
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb28
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb28
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb28
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb29
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb29
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb29
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb29
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb29
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb30
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb30
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb30
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb30
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb30
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb31
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb31
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb31
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb32
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb32
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb32
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb33
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb33
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb33
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb34
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb34
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb34
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb35
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb35
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb35
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb35
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb35
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb36
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb36
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb36
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb36
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb36
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb36
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb36
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb37
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb37
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb37
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb37
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb37
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb38
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb38
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb38
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb38
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb38
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb38
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb38
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb39
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb39
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb39
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb40
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb40
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb40
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb40
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb40
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb40
http://refhub.elsevier.com/S0031-3203(23)00674-X/sb40

	Learning node representations against perturbations
	Introduction
	Related Work
	Method
	Stability by Edge Perturbations
	Combating Perturbations by Stability and Identifiability
	Objective Function
	Acceleration Strategies for Training

	Experiments and Analysis
	Experiment Setups
	Dataset Description
	Baselines
	Parameter Settings

	Performance Comparison
	Node Classification Performance
	On Preventing Over-smoothing
	On Preventing Over-fitting

	Empirical Results of the Three Properties
	Stability of Node Representations
	Smoothness and Identifiability of Node Representations

	Ablation Study
	Different Perturbations
	 Hyper-parameter Analysis


	Conclusion and Future Work
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


