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Abstract
Recent advancements in the realm of deep generative models focus on generating sam-
ples that satisfy multiple desired properties. However, prevalent approaches optimize these 
property functions independently, thus omitting the trade-offs among them. In addition, the 
property optimization is often improperly integrated into the generative models, resulting 
in an unnecessary compromise on generation quality (i.e., the quality of generated sam-
ples). To address these issues, we formulate a constrained optimization problem. It seeks 
to optimize generation quality while ensuring that generated samples reside at the Pareto 
front of multiple property objectives. Such a formulation enables the generation of samples 
that cannot be further improved simultaneously on the conflicting property functions and 
preserves good quality of generated samples.Building upon this formulation, we introduce 
the ParetO-gUided Diffusion model (PROUD), wherein the gradients in the denoising pro-
cess are dynamically adjusted to enhance generation quality while the generated samples 
adhere to Pareto optimality. Experimental evaluations on image generation and protein 
generation tasks demonstrate that our PROUD consistently maintains superior generation 
quality while approaching Pareto optimality across multiple property functions compared 
to various baselines

Keywords Multi-objective generation · Diffusion model · Pareto optimality · Generative 
model

1 Introduction

Deep generative models have been developing prosperously over the last decade, with 
advances in variational autoencoders  (Kingma and Welling, 2014), generative adversarial 
networks (Goodfellow et al., 2014; Zhang et al., 2023), normalizing flows  (Papamakarios 
et al., 2021), energy-based models (Song and Kingma, 2021), and diffusion models (Song 
and Ermon, 2019; Ho et al., 2020). Particularly, controllable generative models can gen-
erate samples that satisfy multiple properties of interest, showing great promise in vari-
ous applications, such as material design  (Jin et  al., 2020; Tagasovska et  al., 2022) and 
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controlled text/image generation (Dathathri et al., 2020; Liao et al., 2020). These properties 
of interest vary depending on the specific application domains. For example, in protein 
design, the properties can refer to specified structural or functional characteristics, such as 
solubility or binding affinity (Watson et al., 2023). In image generation, the properties can 
refer to certain attributes or features, such as specified hairstyle & makeup (Wang et al., 
2023), or specified color patches (Liu et al., 2021b). In addition, it is considered imperative 
that generated samples should reside in the same data manifold1 as training samples for 
data naturalness concerns (Gruver et al., 2023).

Before delving into details, we first establish the problem setting. Given a data-
set  X ⊆ X  , where X ⊂ ℝ

d denotes a low-dimensional manifold in the high-dimensional 
space ℝd . Suppose we have m objective functions F(x) = [f1(x), f2(x),… , fm(x)] , each of 
which returns a property value for the sample x ∈ X  . The aim of multi-objective genera-
tion is to learn a generative model that produces samples optimized to achieve the best 
values across these functions while ensuring the generated samples remain within the 
manifold X  (green cross in Fig. 1a, namely, ensuring that the quality of generated samples 
(dubbed as generation quality) is good2.

The multi-objective generation problem introduced above inherently requires reconcil-
ing the optimization challenges in two spaces: the functionality space and the sample space 
as shown in Fig. 1a. Given the need to deal with multiple conflicting objectives in order to 
achieve the generation with desired properties, one challenge is how to produce samples 
that cannot be further improved simultaneously across the objectives, a.k.a. Pareto optimal-
ity (Chinchuluun and Pardalos, 2007) (the Pareto front in Fig. 1a). The second challenge arises 
from the manifold assumption that the generated samples should lie within the data mani-
fold X  , namely, generated samples are supposed to be of good quality  (Sanchez-Lengeling 
and Aspuru-Guzik, 2018). Optimizing multiple objectives without considering generation 
quality could result in Pareto solutions outside of the data manifold (i.e., invalid samples on 

Fig. 1  a Diagram of multi-objective generation (best viewed in color). Our multi-objective generation aims 
to produce samples that simultaneously lie on the Pareto front in the functionality space (Left Panel) and 
remain within the manifold X  in the sample space (Right Panel), i.e., the green cross. b Visualization of the 
image generation task optimized with two objectives on CIFAR10. Images are directly taken from the origi-
nal CIFAR10 dataset (see full resolution images in Fig. 12), whose objective values lie on the Pareto front, 
namely, {x|x ∈ X,F(x) = [f ∗

1
, f ∗
2
] ∈ F∗} , where F∗ denotes the points on the Pareto front

1 This relates to the manifold hypothesis that many real-world high-dimensional datasets lie on low-dimen-
sional latent manifolds in the high-dimensional space (Fefferman et al., 2016).
2 In other words, the generated samples is as realistic as samples in the given dataset X.
 We have checked all citations and DOIs and ensured that they are existent, true and duplicate-free.
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the Pareto front of Fig. 1a). The third challenge relates to the coordination of generation qual-
ity and multi-property optimization. To guarantee generation quality, generative models typi-
cally define a divergence between the distribution of generated data and that of real training 
data X (Yang et al., 2023; Goodfellow et al., 2014), which tends to disperse the generated data 
throughout the whole data manifold X  (the purple plane in Fig. 1a). However, since only a 
limited fraction of the samples on the data manifold lie on the Pareto front, there inevitably 
exists some distribution gap between the generated data and the training data, leading to com-
promise of generation quality, when achieving Pareto optimality.

A large number of studies (Klys et al., 2018; Deng et al., 2020; Wang et al., 2024; Li et al., 
2022) attempt to design controllable generative models with multiple properties by simply 
assuming that these properties are independent and aggregating the multiple property objec-
tives into a single one 

∑m

i=1
fi for controlled generation. Notably, a very recent study (Gruver 

et al., 2023) takes into consideration the trade-offs between multiple properties by incorporat-
ing the multi-objective optimization techniques into the generative models. It modified the 
gradient of sampling in vanilla diffusion models as a linear combination of the original diffu-
sion gradient and the gradient solved by the multi-objective Bayesian optimization. However, 
the adopted fixed coefficient is challenging to effectively coordinate the generation quality and 
the optimization of multiple property objectives. This results in an unnecessary loss of genera-
tion quality while achieving Pareto optimality for the property objectives.

In this work, we propose PaRetO-gUided Diffusion model (PROUD) for multi-objective 
generation. PROUD is formulated as a constrained optimization that minimizes the Kull-
back–Leibler (KL) divergence between the distribution of the generated data and that of the 
training data, where the distribution of the generated data is also constrained to be close to 
the distribution of Pareto solutions under the KL divergence. This guarantees that generated 
samples are moved towards the Pareto set and then the quality of these generated samples is 
optimized to the best within a neighborhood of the Pareto set. Specifically, constrained opti-
mization is implemented during the generative process of a pre-trained unconditional diffu-
sion model. Multiple gradient descents for the multiple objectives and the original diffusion 
gradient are adaptively weighted to denoise samples. The contributions of this work are sum-
marized as follows:

• We propose a novel constrained optimization formulation for controllable generation 
adhering to multiple properties, defined as multi-objective generation, which can better 
coordinate the generation quality and the optimization for multi-objectives.

• A new controllable diffusion model (PROUD) is introduced to solve the constrained opti-
mization formulation. The guidance of multiple objectives is adaptively integrated with 
that of data likelihood, which can reduce the needless comprise of generation quality 
while achieving Pareto optimality in terms of multiple property objectives.

• We apply our PROUD to optimizing multiple objectives in the tasks of controllable image 
generation and protein design. Additionally, we establish various baselines based on diffu-
sion models to demonstrate the superiority of our PROUD.

2  Related work

In the section, we summarize the related works based on their strategies for integrating the 
optimization of multiple property objectives into deep generative models.
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Single-objective generation (SOG) refers to approaches that simply combine multiple 
objectives into a single one to guide the generation. Extensive efforts have been devoted 
to controllable generation with multiple properties independent of each other (Klys et al., 
2018; Guo et  al., 2020; Jin et  al., 2020; Deng et  al., 2020; Wang et  al., 2024; Li et  al., 
2022). Nevertheless, these methods fail to capture the correlation between properties and 
ignore the conflicting nature among properties, leading to an insufficient exploration of the 
solution space.

Multi-objective Generation (MOG) refers to approaches that introduce multi-
objective optimization techniques into generative models. Wang et  al. (2022) adopted a 
weighted-sum strategy to deal with the trade-offs between properties, which can only work 
in cases of convex Pareto fronts and a uniformly distributed grid of weighting cannot guar-
antee uniform points on the Pareto front (Sener and Koltun, 2018; Liu et al., 2021a). Stan-
ton et al. (2022) proposed LaMBO (Latent Multi-objective Bayesian Optimization), which 
applies multi-objective Bayesian optimization in the latent space of denoising autoencoder 
to optimize the generated samples with multiple black-box objectives. Although it can 
characterize the Pareto front, the data generated by denoising autoencoder is of inferior 
quality. Gruver et al. (2023) further applied LaMBO to the latent space of discrete diffusion 
models. It generalized classifier-guided diffusion models (Dhariwal and Nichol, 2021) by 
replacing the classifier gradient with the gradient obtained by LaMBO. The combination 
of the score estimate of a diffusion model and the classifier gradient necessitates manual 
tuning of the combination coefficient, which is theoretically inappropriate for non-convex 
functions (Gong et al., 2021). Tagasovska et al. (2022) proposed to use multiple gradient 
descent (Désidéri, 2012) for sampling within compositional energy-based models (EBMs) 
where each EBM is conditioned on one specific property, but training multiple conditional 
EBMs requires much more supervision than training discriminative models. Moreover, 
this kind of paradigm cannot enjoy post-hoc controls upon the pre-trained unconditional 
generative models. Multi-objective generative flow networks (GFlowNets)  (Jain et  al., 
2023) fully integrated guidance from multiple objectives into the training process. So, 
they must be retrained whenever the objectives change and are also not suitable for use 
with pre-trained generative models. In addition, this kind of models are usually difficult to 
train (Shen et al., 2023).

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song and Ermon, 2019; 
Song et al., 2021b) represent the state-of-the-art (SOTA) in deep generative models. There-
fore, we build our multiple-objective generation model based on diffusion models. While 
most related works design their methods based on other deep generative models, we apply 
their ideas to the diffusion model as much as possible for the sake of comparison. Please 
refer to Sect. 5 for more details.

3  Preliminaries

Before delving into our method, we introduce the technical background about multi-objec-
tive optimization in Sect. 3.1 and diffusion models in Sect. 3.2, respectively.

3.1  Multi‑objective optimization

Let x ∈ ℝ
d be a decision variable. Assuming that F(x) =

[
f1(x), f2(x),… , fm(x)

]
 be a set 

of m objective functions, each of which represents a property and is preferred to have a 
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smaller value. The multi-objective optimization problem (Chinchuluun and Pardalos, 2007; 
Deb, 2001) can be conventionally expressed as:

In this context, for x1, x2 ∈ ℝ
d , x1 is said to dominate x2 , i.e., x1 ≺ x2 , iff 

fi(x1) ≤ fi(x2),∀i = 1, 2,… ,m , and F(x1) ≠ F(x2).

Definition 1 (Pareto optimality) A point x∗ ∈ ℝ
d is called Pareto optimal iff there exists 

no any other x� ∈ ℝ
d such that x� ≺ x∗ . The collection of Pareto optimal points are called 

Pareto set, denoted as P∗ . The collection of function values F(x∗) of the Pareto set is called 
the Pareto front (Van Veldhuizen and Lamont, 1998; Borghi et al., 2023).

Definition 2 (Pareto stationarity) Pareto stationarity is a necessary condition for 
Pareto optimality. A point x is called Pareto stationary if there exists a set of scalar 
�i, i = 1, 2,… ,m , such that 

∑m

i=1
𝜔i∇fi(x) = 0,

∑m

i=1
𝜔i = 1,𝜔i > 0,∀i = 1, 2… ,m.

Désidéri (2012) proposed Multiple Gradient Descent (MGD) to find the Pareto optimal 
solutions of Eq.(1). To be specific, given any initial point x ∈ ℝ

d , we can iteratively update 
x according to:

where t is the iteration step. The update direction vt is expected to be close to each gradient 
∇fi(x) ∀i = 1, 2,… ,m as much as possible, which is therefore formulated into the following 
problem:

Through Lagrange strong duality, the solution to Eq.(3) can be framed into

where {�∗
i
}m
i=1

= arg min
{�i}

m
i=1

‖
∑m

i=1
�i∇fi(x)‖

2 under the constraint that 
∑m

i=1
𝜔i = 1,𝜔i > 0,∀i = 1, 2… ,m.

3.2  Diffusion models

The idea of Diffusion models is to progressively diffuse data to noise, and then learn 
to reverse this process for sample generation. Considering a sequence of prescribed 
noise scales 0 < 𝛽1 < 𝛽2 < … < 𝛽T < 1 , Denoising Diffusion Probabilistic Model 
(DDPM)  (Ho et  al., 2020) diffuses data x0 ∼ qdata(x) to noise via constructing a discrete 
Markov chain {x0, x1,… , xT} , where q(xt�xt−1) = N(xt;

√
1 − �txt−1, �tI), xT ∼ N(0, I) . 

This process is called the forwarded process or diffusion process. In particular, 
q(xt�x0) = N(xt;

√
�tx0, (1 − �t)I) , where �t =

∏t

i=1

�
1 − �t

�
.

The key of diffusion-based generative models is to train a reverse Markov chain so that 
we can generate data starting from a Gaussian noise p(xT ) ∼ N(0, I) . The training loss of 

(1)min
x∈ℝd

F(x) = min
x∈ℝd

[
f1(x), f2(x),… , fm(x)

]
.

(2)xt+1 = xt − �vt,

(3)max
v∈ℝd

�

min
i

∇fi(x)
⊤v −

1

2
‖v‖2

�

.

(4)v(x) = ∇F(x) =

m∑

i=1

�∗
i
∇fi(x),
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the reverse diffusion process, a.k.a. generative process, is to minimize a simplified vari-
ational bound of negative log likelihood. Namely,

where ��(xt, t) is a neural network-based approximator to predict the noise  � from 
xt =

√
�tx0 +

√
1 − �t�.

After training the neural network parameterized by � to obtain the optimal �∗
�
(xt, t) , sam-

ples can be generated by starting from xT ∼ N(0, I) and reversing the Markov chain:

where zt ∼ N(0, I) and t = T , T − 1,… , 1 . More variants of diffusion models can be seen 
in Yang et al. (2023).

Existing attempts for incorporating multiple desired properties into the diffusion 
model  (Gruver et  al., 2023) can be straightforwardly adding the derived MGD ∇F(x) in 
Eq.(4) to the noise predictor �∗

�
(xt, t) at each denoising step, namely,

where t = T , T − 1,… , 1 . � is a trade-off hyper-parameter which balances the generation 
quality (i.e., the noise predictor �∗

�
(xt, t) ) and multiple-objectives (i.e., the MGD ∇F(x) ). 

Note that an inappropriate � may lead to unsatisfied samples which either suffer from 
low quality or fail to possess required properties (Refer to experimental observations in 
Sect. 5).

4  Multi‑objective generation

As discussed above, optimizing generative models in terms of m objectives aims to pro-
duce samples that cannot be simultaneously improved for all objectives, namely, Pareto 
optimality (see Definition 1). Meanwhile, the generated samples are required to be as real-
istic as the training samples, which is usually achieved by enforcing distribution alignment 
between the generated samples and the training samples.

4.1  MOG compared with MOO

As shown in Table  1, both the MOO and MOG share the same objectives  F(x) but 
differ in the space that x resides in, which is termed as “decision space” or “solution 
space” in the MOO problem (Chinchuluun and Pardalos, 2007) and is termed as “data 
space” in the MOG problem (Gruver et al., 2023; Wang et al., 2024). To be specific, the 
decision space of the MOO problem is defined as the whole space of ℝd (Cheng et al., 
2017), while the data space of the MOG problem only resides in a low-dimensional 
manifold X  embedded in ℝd (a.k.a. the ambient space) (Fefferman et al., 2016; Roweis 
and Saul, 2000; McInnes et al., 2018). Such a difference highlights that the objectives 

(5)�x0∼qdata(x),�∼N(0,I)

�

‖� − ��

�√
�tx0 +

√
1 − �t�, t

�

‖2
�

,

(6)xt−1 =
1

√
1 − �t

�

xt −
�t

√
1 − �t

�∗
�

�
xt, t

�
�

+
√
�tzt,

(7)xt−1 =
1

√
1 − �t

�

xt −
�t

√
1 − �t

�

�∗
�

�
xt, t

�
+ �∇F(x)

�
�

+
√
�tzt,
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to be optimized for MOG are only meaningful within the data manifold. When simply 
applying MOO algorithms to search for solutions in the high-dimensional sample space, 
the obtained solutions cannot guarantee residing within the data manifold, thus result-
ing in very low data quality (i.e., invalid samples in Fig. 1a) and a loss of practicabil-
ity (Sanchez-Lengeling and Aspuru-Guzik, 2018).

To sum up, the necessity to concurrently consider generation quality distinguishes 
the MOG problem from the MOO problem. Specifically, a dataset with real samples 
is required to define the data manifold on which the generated samples are expected to 
reside (Eq.(8)).

4.2  Constrained optimization for MOG

A straightforward solution of MOG is to take consideration of generation quality as an 
additional objective and formulate it into a m + 1 objectives problem. However, the het-
erogeneity of multiple objective optimization (usually defined w.r.t. a single sample) 
and the distribution alignment (defined w.r.t. a dataset) would bring out the optimiza-
tion difficulty for the resultant MOO. Although it is feasible to simplify the distribution 
divergence w.r.t. a dataset as quality scores for individual samples in some deep gen-
erative models (Arjovsky et al., 2017), it is still challenging to obtain desired solutions 
that achieve Pareto optimality on m objectives from the optimization of m + 1 objec-
tives which explore a much larger space, as empirically verified in the experiments. In 
addition, the complexity of multi-objective optimization increases significantly with the 
number of objectives (Ishibuchi et al., 2008).

Instead of formulating a complex and ineffective m + 1 objective problem, we imple-
ment the multi-objective generation through a tailor-designed constrained optimization 
problem upon m property objectives. Such a formulation also allows us to stress respec-
tive significance of data generation and m-objective optimization, instead of treating 
them equally important. Specifically, let p�(x) denote the target data distribution param-
eterized by � , and p0 denote the distribution of the solution samples on the Pareto front, 
our constrained optimization problem can be formulated as follows

where D(⋅, ⋅) denotes the distribution divergence and � is a small positive value.
The loss in Eq.(8) controls the generation quality, which ensures the quality of the 

generated data as realistic as possible. The constraint in Eq.(8) ensures the generated 

(8)min
�

D
[
qdata(x)||p�(x)

]
s.t. D

[
p0(x)||p�(x)

]
≤ �.

Table 1  The MOO problem versus the MOG problem

The generation quality in MOG is usually modeled based on the given dataset X ⊂ X  , where X  denotes a 
low-dimensional manifold embedded in the high dimensional space ℝd

Objectives Decision/data space Gen-
eration 
quality

MOO F(x) = [f1(x), f2(x),… , fm(x)] x ∈ ℝ
d ×

MOG x ∈ X,X ⊂ ℝ
d ✓
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data x ∼ p�(x) to be Pareto optimal (with a small bearable error). Overall, Eq.(8) pro-
vides certain quality assurance while obtaining samples that can approach Pareto opti-
mality of multiple property objectives.

4.3  Langevin dynamics for data distribution approximation

It is difficult to directly solve Eq.(8) when both qdata(x) and p0(x) are unknown. Moti-
vated by those widely-developed techniques of sampling algorithms for approximat-
ing data distribution (Andrieu et al., 2003; Song and Ermon, 2019; Liu et al., 2021a), 
we develop Langevin dynamic-based sampling techniques to solve Eq.(8). Specifi-
cally, Langevin dynamics are capable of generating samples from a given probability 
distribution q(x) solely by utilizing its score function ∇ log q(x) . Given an initial value 
xT ∼ N(0, I) , the Langevin method recursively computes the following:

where � is the step size and can be fixed or dynamic, z is sampled from the standard normal 
distribution N(0, I) and g(xt) is the update direction for xt , equal to ∇ log q(xt) . The distri-
bution of x0 will be close to the given data distribution q(x) when � → 0 and T → ∞ under 
some regularity conditions (Welling and Teh, 2011).

Before deriving the proper gradient g(xt) to approximate the distribution optimized in 
Eq.(8) as a whole, we investigate the gradient-based strategies to optimize D

[
qdata(x)||p�(x)

]
 

and D
[
p0(x)||p�(x)

]
 via Langevin dynamics, separately.

Optimization of D
[
qdata(x)||p�(x)

]
 in Eq.(8). Actually, various generative models are 

deduced to approximate the minimization of the KL divergence between the data distri-
bution qdata(x) and the model distribution  p�(x)  (Kingma and Welling, 2014; Song et al., 
2021a; Papamakarios et al., 2021). Here, we choose diffusion models as the representative 
for optimizing D

[
qdata(x)||p�(x)

]
 given their equivalent form to Eq. (9)  (Ho et  al., 2020; 

Song et al., 2021b). Particularly, the time-dependent predicted noise �∗
�

(
xt, t

)
 in Eq. (6) is 

the update direction g(xt) in anneal Langevin dynamics with a dynamic step size �t:

Consequently, the distribution of p�(x0) will approach qdata(x) (Song et al., 2021a).
Optimization of D

[
p0(x)||p�(x)

]
 in Eq.(8). On the other hand, we can integrate MGD (Eq.

(4)) into Langevin dynamics to optimize D
[
p0(x)||p�(x)

]
 , aiming to approximate the distribu-

tion of the Pareto set p0(x) upon convergence. Namely,

where � is a fixed step size. The distribution of x0 will converge to p0(x) , as demonstrated 
in Theorem 3.3 of Liu et al. (2021a).

4.4  Pareto‑guided diffusion model

Based on the above analysis, the key to solving the constrained optimization problem (Eq.
(8)) is to design a proper strategy for unifying the optimization of D

[
qdata(x)||p�(x)

]
 and 

D
[
p0(x)||p�(x)

]
 within the framework of Langevin dynamic sampling. Therefore, we can 

(9)xt−1 = xt − �g(xt) +
√
2�z, t = T , T − 1,… , 0,

(10)xt−1 = xt − �t�
∗
�

�
xt, t

�
+
√
2�tz.

(11)xt−1 = xt − �∇F(xt) +
√
2�z,
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indirectly solve Eq. (8) by designing the following strategies to update the gradient g(xt) in Eq. 
(9): 

1. If the sample xt is far away from the Pareto front (constraint violation), g(xt) is chosen 
to assure Pareto improvement (i.e., decreasing all the m objectives) to xt . The amount 
of Pareto improvement is determinant by the distance of xt to the Pareto front.

2. If there are multiple directions that can yield Pareto improvement (constraint violation), 
the direction of Pareto improvement that decreases D

[
qdata(x)||p�(x)

]
 most (reducing 

loss) is chosen as g(xt).
3. If xt is close to the Pareto front (constraint satisfaction), i.e., having a small ‖∇F

�
xt
�
‖ 

according to Definition 2, g(xt) is chosen to fully optimize D
[
qdata(x)||p�(x)

]
 (reducing 

loss).

Following  Ye and Liu (2022), we design a new objective based on the gradients to 
achieve the above conditions. To be specific, since �∗

�

(
xt, t

)
 is the gradient for optimizing 

D
[
qdata(x)||p�(x)

]
 , and ∇F(x) is the gradient for optimizing D

[
p0(x)||p�(x)

]
 , the integrated 

gradient g(xt) can be solved by the following objective:

where � and e are positive hyper-parameters. The constraint in Eq.(8) can be approximated 
by the small gradient norm ∇F(x) due to Pareto stationarity (Definition 2). In particular, 
when ‖∇F

�
xt
�
‖ > e , �t is set to be proportionate to ‖∇F

�
xt
�
‖ . This will encourage the 

gradient g(xt) to have positive inner products with all ∇fi(x) , approximating ∇F(x) . Mean-
while, the amount of Pareto improvement is based on the distance of xt to the Pareto front. 
If ‖∇F

�
xt
�
‖ has a very small norm, which means that the sample xt is close to the Pareto 

front, we will have gt(x) = �∗
�

(
xt, t

)
 with �t = −∞ . Therefore, samples will be updated with 

a pure gradient descent on D
[
qdata(x)||p�(x)

]
 without taking into account the m objectives 

{fi(x)}
m
i=1

 , namely, �i,t = 0,∀i ∈ [m].
At the situation of ‖∇F

�
xt
�
‖ > e , the solution g(xt) of Eq.(12) is expressed as:

where {�i,t}mi=1 is the solution of the following dual problem:

Substituting the derived gradient g(xt) (Eq.(13)) into Eq.(9) and adopting a dynamic step 
size �t , we can obtain a new kind of controllable diffusion modeling, which is named as 
PaRetO-gUided Diffusion model (PROUD):

(12)

g(xt) = argmin
g

1

2
‖g − 𝜖∗

𝜃

�
xt, t

�
‖2

s.t. ∇fi(x)
Tg ≥ 𝜙t, ∀i = 1, 2,… ,m,

𝜙t =

�
𝛼‖∇F

�
xt
�
‖ if ‖∇F

�
xt
�
‖ > e

−∞ otherwise
,

(13)g(xt) = �∗
�

(
xt, t

)
+

m∑

i=1

�i,t∇fi(xt),

(14)max
�i,t∈ℝ

m
+

−
1

2
‖�∗

�

�
xt, t

�
+

m�

i=1

�i,t∇fi(xt)‖
2 +

m�

i=1

�i,t�t.
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PROUD does not modify the training process of diffusion models but only updates gradi-
ents during the generative process, as summarized in Algorithm 1. Therefore, our PROUD 
can be plugged into any pre-trained diffusion model to gain post-hoc control during the 
generative process.

In contrast to existing methods that crudely combine generative models with multi-
objective optimization techniques using a predefined balance coefficient, our constrained 
optimization formulation (Eq.(8)) allows to dynamically infer the balance coefficient (Eq.
(14)), prioritizing the guarantee of Pareto optimality.

Algorithm 1  Pareto-guided Reverse Diffusion Process for a Single Sample

4.5  Diversity regularization for diversified pareto solutions

In practice, MGD integrated with Langevin dynamics fails to obtain diversified Pareto 
solutions although it can be guaranteed to obtain solutions on the Pareto front (Liu et al., 
2021a). To make the solutions be evenly distributed on the Pareto front, we consider add-
ing a diversity regularization, which can be enforced either in the sample space or the func-
tionality space. Because we are interested in high-dimensional data generation, imposing 
larger distances between samples can be challenging. Furthermore, a significant separation 
between samples does not necessarily ensure a substantial distinction between their respec-
tive functionalities. Therefore, we define the diversity regularization based on the objective 
values.

Suppose there are N particles {x1, x2,… , xN} in each step of our PROUD. We omit the 
subscript t of the time step for simplicity. The diversity loss is defined to encourage the dis-
similarity of the objective values:

(15)xt−1 = xt − �t

�

�∗
�

�
xt, t

�
+

m�

i=1

�i,t∇fi(xt)

�

+
√
2�tz.
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The diversity loss Eq.(16) is added to the main objective in Eq.(8) with a weight coeffi-
cient �.

5  Experiments

In this section, we evaluate the effectiveness of our PROUD in optimizing image genera-
tion and protein generation with multiple conflicting objectives. We study white-box multi-
objectives in this work and particularly focus on using MGD as the MOO technique to 
obtain the gradient from multi-objectives. The exploration of the black-box setting, as men-
tioned in Stanton et al. (2022), is discussed in the conclusion and remains for future work.

Dataset. In the task of image generation, we use the CIFAR10 (Krizhevsky and Hinton, 
2009) dataset, which consists of 60,000 color images, each with a size of 3 × 32 × 32 , dis-
tributed across 10 classes. Regarding protein generation, following Gruver et al. (2023), the 
experiment was conducted on the paired Observed Antibody Space (pOAS) dataset (Olsen 
et al., 2022), which comprises 90, 990 antibody sequences, each processed to a fixed length 
of 300.

Baselines. First, we include the most closely-related and SOTA work in MOG that 
applies the MOO technique to the deep generative model (Gruver et al., 2023). This base-
line is termed as “DM+m-MGD”, where the MGD of m objectives is used to guide the 
generation of diffusion models (DM). We also include the baseline regarding single-objec-
tive generation, termed as “DM+single”. It fuses multiple objectives into a single objective 
and uses the gradient of the obtained single objective to guide the generation of diffusion 
models. Another considered baseline is “ m + 1-MGD”. It treats the objective of the dif-
fusion model as an additional objective and formulates multi-objective generation as the 
optimization of m + 1 objectives. MGD is then applied directly for the resultant m + 1 
objectives. To stress the necessity of quality assurance in the generation problem, which is 
the core difference between MOG and MOO, we include the MGD of m objectives as the 
baseline, called “m-MGD”.

For all methods equipped with MGD, the diversity regularization (Eq.(16)) is included 
except for m + 1-MGD since its extra objective fm+1(x) , i.e., data likelihood, is not acces-
sible for the diffusion models.

Metrics. In terms of generation quality, the Frechet Inception Distance (FID)  (Heusel 
et al., 2017) is adopted as the metric for image quality, while the log-likelihood assigned 
by ProtGPT  (Ferruz et  al., 2022) is considered as the metric for the quality of protein 
sequences following  Gruver et  al. (2023). Concerning Pareto optimality, Hypervolume 
(HV) (Zitzler and Thiele, 1999) is adopted to measure how well the methods approximate 
the Pareto set.

(16)l(x1, x2,… , xN) =
�

i≠j

1

‖F(xi) − F(xj)‖2
.
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5.1  Image generation

We follow Liu et al. (2021b)3 to optimize CIFAR10 images with the objectives that force 
the middle of an image to be a specified color square.

(1) Controllable generation on CIFAR10 with two objectives (Fig. 1b):

• f1(x) = ‖xΩ − 1Ω‖
2
2 , where x represents the entire image, and xΩ ⊆ x is an image patch 

in the region Ω , corresponding to the square at the center of the image. Similar to the 
practical relevance shown in Liu et al. (2021b), this objective is to restrict the center of 
the generated images to be a white square, which is to sample CIFAR10 images that 
exhibit white color in their middle. The patch size is set to 3 × 8 × 8 in the experiment.

• f2(x) = ‖xΩ − 0.5Ω‖
2
2 with the similar setting. This objective is to constrain the center 

to be a grey square.

The desired generation for these two objectives would be those CIFAR10-like images 
with patches in normalized RGB color values4 between [0.5, 0.5, 0.5] (grey) and [1, 1, 1] 
(white), in the middle, according to Ishibuchi et al. (2013); Li et al. (2017). Please refer to 
“Appendix B” for more details.

(2) Controllable generation on CIFAR10 with three objectives:

• f1(x) = ‖xΩ − aΩ‖
2
2 , where x represents the entire image, and xΩ ⊆ x is an image patch 

in the region Ω , corresponding to the square at the center of the image. This objective is 
to restrict the center of the generated images to be a black square. The patch size is set 
to 3 × 8 × 8 in the experiment. aΩ = [0, 0, 0]8×8.

• f2(x) = ‖xΩ − bΩ‖
2
2 with the similar setting. This objective is to constrain the center to 

be a deep red square. bΩ = [0.5, 0, 0]8×8.
• f3(x) = ‖xΩ − cΩ‖

2
2 with the similar setting. This objective is to constrain the center to 

be a deep yellow square. cΩ = [0.5, 0.5, 0]8×8.

The desired generation for these three objectives would be those CIFAR10-like images 
with patches in normalized RGB color values belonging to the convex triangle formed by 
the points [0, 0, 0] (black), [0.5, 0, 0] (deep red) and [0.5, 0.5, 0] (deep yellow). Please 
refer to “Appendix B” for more details. We adopt the diffusion model used in Song and 
Ermon (2020) as the backbone for CIFAR10 image generation.

We sample images from our PROUD and other baselines using the same seeds for the 
sake of comparison. From Fig. 2, we can observe that: (1) our PROUD and two baselines, 
DM+m-MGD and m-MGD, can successfully generate harmonious images consistent with 
the patch-level constraints imposed by two conflicting objectives. Among them, the gener-
ated images of our PROUD exhibit better quality than DM+m-MGD in some instances, as 
the latter tends to sacrifice generation quality to excessively meet Pareto optimality of the 

4 RGB values [0, 255] are divided by 255.

3 As demonstrated in Sect.  3 and Fig.  3b of their study, an objective that forces the center of generated 
images to be a black square can be used for constrained sampling on CIFAR10. Accordingly, they obtain 
samples that lie on the CIFAR10 data manifold and exhibit the black square in the middle, such as “black 
plane” and “black dog” images which contain a black square (smaller size than the object) in the middle. 
This task can be considered as image outpainting (Yao et al., 2022), namely, extrapolating images based on 
specified color patches on CIFAR10.
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objectives due to the lack of a mechanism to emphasize the quality of generated samples. 
(2) m + 1-MGD fails to generate satisfactory images consistent with the patch-level con-
straints, as the new objective (i.e, generation quality) biases the optimization of the original 
two objectives. Although the Pareto set of the original m-objectives resides within that of 
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Fig. 2  Generated images from our PROUD and various baselines on CIFAR10 under two/three con-
flicting patch-based objectives. The scores under each image refer to its objective values [f1(x), f2(x)]
/[f1(x), f2(x), f3(x)] , respectively, where those objective values do not reside on the Pareto front are marked 
in red
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the m + 1-objectives (Tanabe and Ishibuchi, 2020), the proportion is negligible even when 
sampling a large number of images. Refer to Figs.  3d, f and 4d, f for more details. (3) 
m-MGD, which does not consider generative quality in its optimization, generates mean-
ingless images because the optimization of multiple objectives in the data generation task 
is only meaningful within the data manifold, as image data usually concentrate on low-
dimensional manifolds embedded in a high-dimensional space.

For the MOG setting on CIFAR10 optimized with two objectives, we randomly select 
1000 generated images for each method, and calculate their objective values [f1(x), f2(x)] , 
respectively. Figure 3 shows that: (1) our PROUD (Fig. 3a) and two baselines DM+m-
MGD (Fig.  3b) and m-MGD (Fig.  3e) successfully generate samples which can cover 
the entire Pareto front. Among them, our PROUD and m-MGD spread more evenly over 
the Pareto front. (2) DM+single only covers a partial Pareto front as shown in Fig. 3c, 
because simply averaging multiple objectives into a single objective fails to explore 
the trade-off between multiple objectives and leads to insufficient solutions. (3) As dis-
cussed in Fig. 2, m + 1-MGD explores a much larger solution space (Fig. 3f), while only 
a few of them are located at the Pareto front of the original m objectives (Fig. 3d).

For the MOG setting on CIFAR10 optimized with three objectives, we randomly 
select 5000 generated images for each method and calculate their objective values 
[ f1(x), f2(x), f3(x) ], respectively. Figure  4 shows that our PROUD exhibits significant 
superiority in evenly covering the Pareto front under this more challenging setting. This 
is because our constrained optimization formulation can better coordinate the genera-
tion quality and the optimization for multi-objectives, while ensuring sample diversity 

Fig. 3  Approximation of Pareto front of various methods on CIFAR10 optimized with two objectives. Each 
point denotes a generated sample, 1000 in total, where the coordinate corresponds to its objective values. 
The depth of color represents sample density, the deeper the higher
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(Eq.(8), Eq.(16)). Although it is possible to force the two baselines DM+m-MGD and 
m-MGD to exhibit better diversity by setting a large diversity coefficient  � , but this 
would cause the samples they generate to violate Pareto optimality, as shown in Figs. 8 
and 9 in the “Appendix”.

To further demonstrate the superiority of our PROUD on multi-objective generation, 
we collect the quantitative evaluation for Pareto approximation and image quality in 
the left part of Table 2 by sampling 50,000 images. It shows that: our PROUD achieves 
the best or the second best values in both two metrics, i.e., HV for Pareto approxima-
tion and FID for image quality. It demonstrates our claim that our PROUD can provide 
certain quality assurance for generated samples approaching the Pareto set of multiple 
properties. On the contrary, either single or multiple objective generation baselines, i.e., 
DM+single and DM+m-MGD, would inevitably sacrifice generation quality to exces-
sively optimize the objectives.

5.2  Protein sequence generation

To further verify our model in more challenging applications, we design multiple-objec-
tive generation task on the pOAS dataset which aims to optimize two conflicting objec-
tives for antibody sequences:

Fig. 4  Approximation of Pareto front of various methods on CIFAR10 optimized with three objectives. 
Each point denotes each generated sample, 5000 in total, where the coordinate corresponds to its objective 
values. The depth of color represents sample density, the deeper the higher. The values in the brackets are 
earth mover distances between the generated samples and the ground-truth Pareto solutions. We add this 
measure to indicate that our generated samples are indeed close to the Pareto front given the 3D visualiza-
tion
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• f1(x) , the solvent accessible surface area (SASA) of the protein’s predicted structure. 
Please refer to Ruffolo et  al. (2023) for detailed procedures of calculating the SASA 
value using the protein sequences.

• f2(x) , the percentage of beta sheets (%Sheets), which is measured on protein sequences 
directly (Cock et al., 2009).

The ground-truth Pareto front is not available due to the complexity of property objec-
tives. Since the evaluation functions for SASA and %Sheet are not differentiable, we adopt 
the network predictors as differential surrogate functions for all methods. We apply the 
ground-truth evaluation functions for calculating the HV values on the generated samples. 
We adopt the discrete diffusion model in Gruver et al. (2023) as the backbone for protein 
sequence generation.

To demonstrate the superiority of our PROUD in multi-objective protein generation, 
we initially sample 5,  000 protein sequences for each method and collect the non-dom-
inated samples based on their two target properties, as depicted in Fig.  5. The observa-
tions are as follows: (1) DM+single exhibits a wide coverage of the objective values. This 
could be attributed to the fact that the noise in discrete diffusion models can bring out large 
diversity (Gruver et al., 2023). By incorporating MGD into diffusion models, PROUD and 
DM+m-MGD achieve larger coverage of the objective values. This verifies the superiority 
of MOG over SOG. Our PROUD and DM+m-MGD emphasize respective Pareto improve-
ment of the objectives. Nevertheless, Table 2 shows that our PROUD achieves a better HV. 

Table 2  Quantitative evaluation for Pareto approximation and generation quality

Bolded values and underlined values indicate the best results and the second best results, respectively. The 
Friedman & Nemenyi test in “Appendix B” demonstrates that our PROUD is significantly better than other 
baselines. “–” denotes that the value is not available as no valid data are generated

Method CIFAR10 (2-obj) CIFAR10 (3-obj) pOAS

HV↑ ( 10−2) FID↓ HV↑ ( 10−3) FID↓ HV↑ ProtGPT↑

PROUD (ours) 5.21±0.00 31.39±0.05 3.26±0.00 44.22±0.13 2472.55±60.15 − 645.93±0.99
DM+m-MGD 5.20±0.01 38.72±0.36 3.26±0.01 49.90±0.14 2289.61±65.12 − 692.80±0.34
DM+single 4.77±0.01 36.35±0.47 2.21±0.00 57.77±0.05 2302.21±58.25 − 682.26±0.49
m + 1-MGD 5.17±0.00 11.21±0.10 2.87±0.03 11.80±0.05 838.74±14.08 − 662.86±0.76
m-MGD 5.21±0.00 – 3.26±0.01 – – –

Fig. 5  The approximation of 
Pareto front (i.e., generated 
protein sequences) of various 
methods. We cannot visualize the 
results of m-MGD because all its 
generated protein sequences are 
invalid, resulting in nonexistent 
SASA evaluations ( f1)
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(2) Similar to the image generation task, m + 1-MGD demonstrates a much poorer approxi-
mation of the Pareto front for the original m objectives. Meanwhile, m-MGD even fails to 
generate any valid protein sequences, as the SASA evaluation ( f1(x) ) for all its generated 
samples is nonexistent. This further highlights the difference between MOG and MOO.

Furthermore, we collect the quantitative evaluation for Pareto approximation and pro-
tein quality in the right part of Table 2 by sampling 5, 000 protein sequence.5 Benefiting 
from our constrained-optimization formulation, our PROUD can avoid unnecessary loss of 
protein quality compared to other MOG/SOG counterparts, DM+m-MGD and DM+single. 
This improvement will greatly increase the practicality of its generated samples.

5.3  Hyper‑parameter sensitivity study

We study PROUD with different configurations of the hyper-parameters, namely, � and 
e in Eq.(12) as well as the diversity coefficient � in Eq.(16). The experiments are con-
ducted on CIFAR10, with the same setting as Sect. 5.1.

We set � as 0.1, 0.5, 1 and e as 0.01, 0.03, 0.05, respectively. We observe in Table 3 
that PROUD is not sensitive to the choice of the hyper-parameters � and e.

We set � as 0, 0.1, 0.2, 1. The results are summarized in Fig. 6a–d, showing that: (1) 
With an appropriate diversity coefficient, our PROUD can well cover the Pareto front. 
(2) Without the diversity regularization, PROUD can only obtain a small set of Pareto 
solutions. This demonstrates the necessity of the diversity loss, consistent with the find-
ing in the former work (Liu et al., 2021a). (3) With a too large value of � , the generated 
samples could fall outside the Pareto front. The effect of the diversity coefficient on 
DM+m-MGD (Fig. 6e–h) is similar.

To further investigate the effects of the diversity coefficient on the generation quality, 
we collect FID results in Table 4. With � = 0.2 , PROUD obtains both the best FID and 
HV, which is thus set as the hyper-parameter used in Sect. 5.1.

To demonstrate that the single-objective generation would fail to cover the Pareto 
front even with a uniform grid of weighting, we set the weight coefficient w for com-
bining two objectives into a single objective in DM+single “w × f1(x) + (1 − w) × f2(x) ” 
as 0 to 1 with a step  0.1. We put the results of 0, 0.1, 0.5, 1 in Fig.  6i–l and rest in 
“Appendix”. With w = 0, 0.1, 0.2, 0.3, 0.4 , the single objective is dominated by f2(x) . 
Consequently, the generated samples achieve the smallest value for f2(x) but the largest 
one for f1(x) ; vice versa. With an equal weight, the generated samples are supposed to 
obtain the comprise value between two objectives, i.e., (0.0625, 0.0625). We notice that 

Table 3  Sensitivity analysis on � and e in Eq. (12)

We retain more decimal places here to demonstrate the subtle differences between results

Metric � = 0.2, e = 0.03 � = 0.2, � = 0.5

� = 0.1 � = 0.5 � = 1 e = 0.01 e = 0.03 e = 0.05

FID 31.58963073 31.48232218 31.5896311 31.58966697 31.48232218 31.58966696
HV 0.05211343 0.05211350 0.05211343 0.05211343 0.05211350 0.05211343

5 We only sample 5, 000 protein sequence since the computation cost of SASA values is very high.
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the generated samples cover a small range around this point. This diversity could result 
from the diffusion noise in diffusion models.

6  Conclusion

This paper studies the problem of optimizing deep generative models with multiple conflict-
ing objectives. We highlight this problem setting by treating the optimization of samples with 
multiple properties and the process of sample generation as a unified task. By analyzing the 

Table 4  Sensitivity analysis on �

� and e are set to 0.5 and 0.03, respectively. The best results are 
marked in bold

Metric � = 0 � = 0.01 � = 0.1 � = 0.2 � = 0.3 � = 1

FID 34.80 30.98 31.80 31.48 31.63 33.59
HV 0.0483 0.0498 0.0521 0.0521 0.0521 0.0521

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(a) γ = 0

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(b) γ = 0.1

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(c) γ = 0.2

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(d) γ = 1

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(e) γ = 0

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(f) γ = 0.1

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(g) γ = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(h) γ = 1

0
0.05 0.1 0.15 0.2 0.25

0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(i) w = 0

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(j) w = 0.1

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(k) w = 0.5

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.05

0.1

0.15

0.2

0.25
Pareto Front
Sample

(l) w = 1

Fig. 6  Analysis on the effects of the diversity coefficient  � in Eq. (16) to our PROUD (1st row) and 
DM+m-MGD (2nd row). As DM+single (3rd row) degenerates to SOG and does not have the diversity 
regularization, we conduct sensitivity analysis on its weight coefficient for combining two objectives, i.e., 
(1 − w)f1 + wf2 . The depth of color represents sample density, the deeper the higher
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connections and differences from multi-objective optimization, we introduce a constrained 
optimization formulation to solve the multi-objective generation problem, based on which we 
developed PROUD. Our experiments demonstrate the efficacy of PROUD in both image and 
protein sequence generation. While we explored the white-box multi-objectives in this work, 
it would be interesting to explore our PROUD in the black-box setting in the future. The mul-
tiple gradient descent technique used can be replaced by methods such as Bayesian multi-
objective optimization (Stanton et al., 2022).

Appendix A: Complete sensitivity analysis for single‑objective 
generation

We set the weight coefficient  w for combining two objectives in 
DM+single “w × f1(x) + (1 − w) × f2(x) ” as 0 to 1 with a step 0.1. The results is shown in 
Fig. 7:

• when w < 0.5 , the resultant final objective is dominated by f2(x) . Consequently, the 
leading objective is optimized to the best where all the generated samples have the 
smallest value for f2(x) but the largest one for f1(x).

• when w > 0.5 , the resultant final objective is dominated by f1(x) . Therefore, the gener-
ated samples achieve the smallest value for the first objective but the largest one for the 
second objective.

• when w = 0.5 =
1

m
 , the generated samples are supposed to obtain the comprise value 

between  f1(x) and f2(x) , i.e., (0.0625, 0.0625). We notice that the generated samples 
cover a small range around this point. This diversity could result from the diffusion 
noise in diffusion models (Figs. 8, 9, 10).

Appendix B: More experimental settings and analyses

Image Generation
According to Ishibuchi et al. (2013); Li et al. (2017)6, we can obtain that: (1) the Pareto 

solutions of the two objective setting are the points on the line between 1Ω and 0.5Ω . 
Namely, the Pareto solutions are {x|xΩ = �Ω, �Ω ∈ [0.5Ω, 1Ω]}.7 When taking images from 
CIFAR10 based on the Pareto set (Fig. 12), we follow Liu et al. (2021b) to sample images 
in a small neighborhood around �Ω , namely, ‖xΩ − �Ω‖

2
2
≤ � , where � = 8 × 10−4 . (2) 

The Pareto solutions of the three objective setting are the points on the convex polygo-
nal formed by three points aΩ, bΩ, cΩ . For easy understanding, we assume Ω = 3 × 1 × 1 , 
which is actually to constrain the middle point of CIFAR10 images to be certain colors.

6 Our problem setting is slightly different as we take the distance square in order to obtain a non-linear 
shape of the Pareto front. We also refer reviewer to example-1 in Liu et al. (2021a) that defines a same two-
objective problem but with 1-D decision variable for easy understanding.
7 We use [0.5Ω, 1Ω] to denote image patches in normalized RGB color values between [0.5, 0.5, 0.5] (grey) 
and [1, 1, 1] (white).
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We visualize the Pareto front of these two settings in Fig. 11. Specifically, for the two 
objective setting, the Pareto optimal points lie on the line between [1, 1, 1] and [0.5, 0.5, 
0.5] (Fig.  11a), which physically denote RGB values (normalized, RGB values [0, 255] 
divided by 255). Then, we calculate the objectives values [f1(x), f2(x)] for these points 
accordingly, shown in Fig. 11b. Figure 11c, d are plotted for the three objective setting in 
a similar way. According to their Pareto fronts, we select [0.25, 0.25] and [0.2, 0.1, 0.2] as 
reference points to calculate the hypervolume (HV) for the two objective setting and the 
three objective setting in Table 2, respectively.
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Fig. 7  Sensitivity analysis on the weight coefficient for combining two objectives, i.e., (1 − w)f1 + wf2 in 
DM+single. The depth of color represents sample density, the deeper the higher

Fig. 8  Different diversity coefficient � for DM+m-MGD on CIFAR10 optimized with three objectives. 1000 
generated samples are randomly selected for visualization
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We sample CIFAR10 image using the constraint with different patch sizes to demon-
strate its effect in Fig. 13. With a smaller size of the region Ω , more CIFAR10 images will 
meet the constraint.

Protein Sequence Generation
Our experiments in Section 5.2 adopted the same dataset and objectives as that in Sec-

tion  5.2 of  Gruver et  al. (2023). Note that we did not include their other experiments, 
because the experiment in their Section 5.1 is not a generation task equipped with prop-
erty optimization and the dataset for the experiment in Section 5.3 and 5.4 has not been 
released due to private data. We select [1 × 104, 0] as a reference point to calculate the HV 
for this task.

Justification of Our Experiment Designs
Our experiment designs can appropriately justify the motivation of the MOG problem. 

Both CIFAR10 and protein datasets are real-world datasets whose data lie on low-dimen-
sional manifolds in high-dimensional space (Krizhevsky and Hinton, 2009; Gruver et al., 
2023), thus applicable to our MOG problem setting. Meanwhile, the objectives consid-
ered for CIFAR10 are indeed benchmark multi-objective optimization problems with clear 
evaluations  (Ishibuchi et al., 2013); the objectives considered for the protein design task 

Fig. 9  Different diversity coefficient � for m-MGD on CIFAR10 optimized with three objectives. 1000 gen-
erated samples are randomly selected for visualization

Fig. 10  Approximation of Pareto front of various methods on CIFAR10 optimized with three objectives. 
The first row presents 50,000 generated samples while the second row presents non-dominated points out of 
50,000 sample points, verifying the HV results obtained in Table 2
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represent real-world scenarios (Gruver et al., 2023). Lastly, Fig. 2 and Table 2 demonstrate 
the necessity of considering generation quality, as the generation quality of all baseline 
methods suffers to some extent when optimizing multiple properties.

Significant Test
We apply the Friedman test under the null hypothesis positing that all methods per-

form similarly, alongside the Nemenyi post-hoc test for pairwise comparisons among the 

Fig. 11  Pareto front of two and three objectives in data space and functionality space optimized for 
CIFAR10 image generation

Fig. 12  Full resolution CIFAR10 images ( 3 × 32 × 32 ) in Fig. 1b of the manuscript. The red box denotes 
the region Ω ( 3 × 8 × 8 ) in the two objectives in Sect. 5.1
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four methods (Demšar, 2006). The number of factors was set to four, given the failure of 
m-MGD to produce qualified samples, leading to its exclusion. The dataset comprised 30 
instances, with each of the four methods independently evaluated five times across three 
datasets, employing two evaluation criteria. The Friedman test shows that �F = 18.24 , 
greater than the critical value F3,87 = 2.709 when � = 0.05 . Therefore, the null hypothesis 
is rejected, which signifies a statistically significant difference among the four methods at 
the significance level of 0.05. Subsequent analysis via the Nemenyi post-hoc test in Fig. 14 
unequivocally demonstrates that our PROUD exhibits marked superiority over the three 
baseline methods.

Appendix C: Discussions

The constrained MOO problem defines its decision space S on a constrained space 
expressed using specified linear, nonlinear, or box constraints (Afshari et al., 2019; Dési-
déri, 2018) in ℝd . Consequently, it is different from our MOG problems, whose manifold 
is delineated by a given dataset X  . Nevertheless, MOG problems could be understood as a 
type of constrained MOO problem in a broader context (Table 5).

Fig. 13  Sampling CIFAR-10 images with regions of different patch sizes

Fig. 14  Nemenyi post-hoc test 
over four methods
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