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Abstract

Recent advancements in the realm of deep generative models focus on generating
samples that satisfy multiple desired properties. However, prevalent approaches
optimize these property functions independently, thus omitting the trade-offs
among them. In addition, the property optimization is often improperly inte-
grated into the generative models, resulting in an unnecessary compromise on
generation quality (i.e., the quality of generated samples). To address these issues,
we formulate a constrained optimization problem. It seeks to optimize generation
quality while ensuring that generated samples reside at the Pareto front of multi-
ple property objectives. Such a formulation enables the generation of samples that
cannot be further improved simultaneously on the conflicting property functions
and preserves good quality of generated samples. Building upon this formulation,
we introduce the PaRetO-gUided Diffusion model (PROUD), wherein the gra-
dients in the denoising process are dynamically adjusted to enhance generation
quality while the generated samples adhere to Pareto optimality. Experimental
evaluations on image generation and protein generation tasks demonstrate that
our PROUD consistently maintains superior generation quality while approach-
ing Pareto optimality across multiple property functions compared to various
baselines.
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1 Introduction

Deep generative models have been developing prosperously over the last decade,
with advances in variational autoencoders (Kingma and Welling, 2014), genera-
tive adversarial networks (Goodfellow et al, 2014; Zhang et al, 2023), normalizing
flows (Papamakarios et al, 2021), energy-based models (Song and Kingma, 2021), and
diffusion models (Song and Ermon, 2019; Ho et al, 2020). Particularly, controllable
generative models can generate samples that satisfy multiple properties of interest,
showing great promise in various applications, such as material design (Jin et al, 2020;
Tagasovska et al, 2022) and controlled text/image generation (Dathathri et al, 2020;
Liao et al, 2020). These properties of interest vary depending on the specific appli-
cation domains. For example, in protein design, the properties can refer to specified
structural or functional characteristics, such as solubility or binding affinity (Watson
et al, 2023). In image generation, the properties can refer to certain attributes or
features, such as specified hairstyle & makeup (Wang et al, 2023), or specified color
patches (Liu et al, 2021b). In addition, it is considered imperative that generated sam-
ples should reside in the same data manifold1 as training samples for data naturalness
concerns (Gruver et al, 2023).

Before delving into details, we first establish the problem setting. Given a
dataset X ⊆ X , where X ⊂ Rd denotes a low-dimensional manifold in the
high-dimensional space Rd. Suppose we have m objective functions F (x) =
[f1(x), f2(x), . . . , fm(x)], each of which returns a property value for the sample x ∈ X .
The aim of multi-objective generation is to learn a generative model that produces
samples optimized to achieve the best values across these functions while ensuring the
generated samples remain within the manifold X (green cross in Fig. 1(a), namely,
ensuring that the quality of generated samples (dubbed as generation quality) is good2.

The multi-objective generation problem introduced above inherently requires rec-
onciling the optimization challenges in two spaces: the functionality space and the
sample space as shown in Fig. 1(a). Given the need to deal with multiple conflicting
objectives in order to achieve the generation with desired properties, one challenge is
how to produce samples that cannot be further improved simultaneously across the
objectives, a.k.a. Pareto optimality (Chinchuluun and Pardalos, 2007) (the Pareto
front in Fig. 1(a)). The second challenge arises from the manifold assumption that
the generated samples should lie within the data manifold X , namely, generated sam-
ples are supposed to be of good quality (Sanchez-Lengeling and Aspuru-Guzik, 2018).
Optimizing multiple objectives without considering generation quality could result in
Pareto solutions outside of the data manifold (i.e., invalid samples on the Pareto front
of Fig. 1(a)). The third challenge relates to the coordination of generation quality and

1This relates to the manifold hypothesis that many real-world high-dimensional datasets lie on low-
dimensional latent manifolds in the high-dimensional space (Fefferman et al, 2016)

2In other words, the generated samples is as realistic as samples in the given dataset X.
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Fig. 1 (a) Diagram of multi-objective generation (best viewed in color). Our multi-objective generation
aims to produce samples that simultaneously lie on the Pareto front in the functionality space (Left
Panel) and remain within the manifold X in the sample space (Right Panel), i.e., the green cross.
(b) Visualization of the image generation task optimized with two objectives on CIFAR10. Images are
directly taken from the original CIFAR10 dataset (see full resolution images in Fig. B6), whose objective
values lie on the Pareto front, namely, {x|x ∈ X,F (x) = [f∗

1 , f
∗
2 ] ∈ F ∗}, where F ∗ denotes the points

on the Pareto front.

multi-property optimization. To guarantee generation quality, generative models typ-
ically define a divergence between the distribution of generated data and that of real
training data X (Yang et al, 2023; Goodfellow et al, 2014), which tends to disperse the
generated data throughout the whole data manifold X (the purple plane in Fig. 1(a)).
However, since only a limited fraction of the samples on the data manifold lie on the
Pareto front, there inevitably exists some distribution gap between the generated data
and the training data, leading to compromise of generation quality, when achieving
Pareto optimality.

A large number of studies (Klys et al, 2018; Deng et al, 2020; Wang et al, 2024; Li
et al, 2022) attempt to design controllable generative models with multiple properties
by simply assuming that these properties are independent and aggregating the multiple
property objectives into a single one

∑m
i=1 fi for controlled generation. Notably, a

very recent study (Gruver et al, 2023) takes into consideration the trade-offs between
multiple properties by incorporating the multi-objective optimization techniques into
the generative models. It modified the gradient of sampling in vanilla diffusion models
as a linear combination of the original diffusion gradient and the gradient solved by
the multi-objective Bayesian optimization. However, the adopted fixed coefficient is
challenging to effectively coordinate the generation quality and the optimization of
multiple property objectives. This results in an unnecessary loss of generation quality
while achieving Pareto optimality for the property objectives.

In this work, we propose PaRetO-gUided Diffusion model (PROUD) for multi-
objective generation. PROUD is formulated as a constrained optimization that
minimizes the Kullback–Leibler (KL) divergence between the distribution of the gen-
erated data and that of the training data, where the distribution of the generated
data is also constrained to be close to the distribution of Pareto solutions under the
KL divergence. This guarantees that generated samples are moved towards the Pareto
set and then the quality of these generated samples is optimized to the best within a
neighborhood of the Pareto set. Specifically, constrained optimization is implemented
during the generative process of a pre-trained unconditional diffusion model. Multiple
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gradient descents for the multiple objectives and the original diffusion gradient are
adaptively weighted to denoise samples. The contributions of this work are summarized
as follows:

• We propose a novel constrained optimization formulation for controllable gen-
eration adhering to multiple properties, defined as multi-objective generation,
which can better coordinate the generation quality and the optimization for
multi-objectives.

• A new controllable diffusion model (PROUD) is introduced to solve the con-
strained optimization formulation. The guidance of multiple objectives is adap-
tively integrated with that of data likelihood, which can reduce the needless
comprise of generation quality while achieving Pareto optimality in terms of
multiple property objectives.

• We apply our PROUD to optimizing multiple objectives in the tasks of con-
trollable image generation and protein design. Additionally, we establish various
baselines based on diffusion models to demonstrate the superiority of our
PROUD.

2 Related Work

In the section, we summarize the related works based on their strategies for integrating
the optimization of multiple property objectives into deep generative models.

Single-objective generation (SOG) refers to approaches that simply combine
multiple objectives into a single one to guide the generation. Extensive efforts have
been devoted to controllable generation with multiple properties independent of each
other (Klys et al, 2018; Guo et al, 2020; Jin et al, 2020; Deng et al, 2020; Wang
et al, 2024; Li et al, 2022). Nevertheless, these methods fail to capture the correlation
between properties and ignore the conflicting nature among properties, leading to an
insufficient exploration of the solution space.

Multi-objective Generation (MOG) refers to approaches that introduce multi-
objective optimization techniques into generative models. Wang et al (2022) adopted
a weighted-sum strategy to deal with the trade-offs between properties, which can
only work in cases of convex Pareto fronts and a uniformly distributed grid of weight-
ing cannot guarantee uniform points on the Pareto front (Sener and Koltun, 2018;
Liu et al, 2021a). Stanton et al (2022) proposed LaMBO (Latent Multi-objective
Bayesian Optimization), which applies multi-objective Bayesian optimization in the
latent space of denoising autoencoder to optimize the generated samples with multiple
black-box objectives. Although it can characterize the Pareto front, the data gener-
ated by denoising autoencoder is of inferior quality. Gruver et al (2023) further applied
LaMBO to the latent space of discrete diffusion models. It generalized classifier-guided
diffusion models (Dhariwal and Nichol, 2021) by replacing the classifier gradient with
the gradient obtained by LaMBO. The combination of the score estimate of a diffu-
sion model and the classifier gradient necessitates manual tuning of the combination
coefficient, which is theoretically inappropriate for non-convex functions (Gong et al,
2021). Tagasovska et al (2022) proposed to use multiple gradient descent (Désidéri,
2012) for sampling within compositional energy-based models (EBMs) where each
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EBM is conditioned on one specific property, but training multiple conditional EBMs
requires much more supervision than training discriminative models. Moreover, this
kind of paradigm cannot enjoy post-hoc controls upon the pre-trained unconditional
generative models. Multi-objective generative flow networks (GFlowNets) (Jain et al,
2023) fully integrated guidance from multiple objectives into the training process. So,
they must be retrained whenever the objectives change and are also not suitable for
use with pre-trained generative models. In addition, this kind of models are usually
difficult to train (Shen et al, 2023).

Diffusion models (Ho et al, 2020; Sohl-Dickstein et al, 2015; Song and Ermon,
2019; Song et al, 2021b) represent the state-of-the-art (SOTA) in deep generative
models. Therefore, we build our multiple-objective generation model based on diffusion
models. While most related works design their methods based on other deep generative
models, we apply their ideas to the diffusion model as much as possible for the sake
of comparison. Please refer to Section 5 for more details.

3 Preliminaries

Before delving into our method, we introduce the technical background about multi-
objective optimization in Section 3.1 and diffusion models in Section 3.2, respectively.

3.1 Multi-objective Optimization

Let x ∈ Rd be a decision variable. Assuming that F (x) = [f1(x), f2(x), . . . , fm(x)] be
a set of m objective functions, each of which represents a property and is preferred
to have a smaller value. The multi-objective optimization problem (Chinchuluun and
Pardalos, 2007; Deb, 2001) can be conventionally expressed as:

min
x∈Rd

F (x) = min
x∈Rd

[f1(x), f2(x), . . . , fm(x)] . (1)

In this context, for x1, x2 ∈ Rd, x1 is said to dominate x2, i.e., x1 ≺ x2, iff fi(x1) ≤
fi(x2), ∀i = 1, 2, . . . ,m, and F (x1) ̸= F (x2).
Definition 1 (Pareto optimality). A point x∗ ∈ Rd is called Pareto optimal iff there
exists no any other x′ ∈ Rd such that x′ ≺ x∗. The collection of Pareto optimal points
are called Pareto set, denoted as P∗. The collection of function values F (x∗) of the
Pareto set is called the Pareto front (Van Veldhuizen et al, 1998; Borghi et al, 2023).
Definition 2 (Pareto stationarity). Pareto stationarity is a necessary condition for
Pareto optimality. A point x is called Pareto stationary if there exists a set of scalar
ωi, i = 1, 2, . . . ,m, such that

∑m
i=1 ωi∇fi(x) = 0,

∑m
i=1 ωi = 1, ωi > 0,∀i = 1, 2 . . . ,m.

Désidéri (2012) proposed Multiple Gradient Descent (MGD) to find the Pareto
optimal solutions of Eq.(1). To be specific, given any initial point x ∈ Rd, we can
iteratively update x according to:

xt+1 = xt − ηvt, (2)

where t is the iteration step. The update direction vt is expected to be close to each
gradient ∇fi(x) ∀i = 1, 2, . . . ,m as much as possible, which is therefore formulated
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into the following problem:

max
v∈Rd

{
min
i

∇fi (x)
⊤
v − 1

2
∥v∥2

}
. (3)

Through Lagrange strong duality, the solution to Eq.(3) can be framed into

v(x) = ∇F (x) =
m∑
i=1

ω∗
i∇fi (x) , (4)

where {ω∗
i }mi=1 = arg min

{ωi}m
i=1

∥
∑m

i=1 ωi∇fi (x) ∥2 under the constraint that
∑m

i=1 ωi =

1, ωi > 0,∀i = 1, 2 . . . ,m.

3.2 Diffusion Models

The idea of Diffusion models is to progressively diffuse data to noise, and then
learn to reverse this process for sample generation. Considering a sequence of
prescribed noise scales 0 < β1 < β2 < . . . < βT < 1, Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al, 2020) diffuses data x0 ∼ qdata(x) to
noise via constructing a discrete Markov chain {x0, x1, . . . , xT }, where q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI), xT ∼ N (0, I). This process is called the forwarded pro-

cess or diffusion process. In particular, q(xt|x0) = N (xt;
√
αtx0, (1 − αt)I), where

αt =
∏t

i=1 (1− βt).
The key of diffusion-based generative models is to train a reverse Markov chain

so that we can generate data starting from a Gaussian noise p(xT ) ∼ N (0, I). The
training loss of the reverse diffusion process, a.k.a. generative process, is to minimize
a simplified variational bound of negative log likelihood. Namely,

Ex0∼qdata(x),ϵ∼N (0,I)

[
∥ϵ− ϵθ

(√
αtx0 +

√
1− αtϵ, t

)
∥2
]
, (5)

where ϵθ(xt, t) is a neural network-based approximator to predict the noise ϵ from
xt =

√
αtx0 +

√
1− αtϵ.

After training the neural network parameterized by θ to obtain the optimal
ϵ∗θ(xt, t), samples can be generated by starting from xT ∼ N (0, I) and reversing the
Markov chain:

xt−1 =
1√

1− βt

(
xt −

βt√
1− αt

ϵ∗θ (xt, t)

)
+
√
βtzt, (6)

where zt ∼ N (0, I) and t = T, T − 1, . . . , 1. More variants of diffusion models can be
seen in Yang et al (2023).

Existing attempts for incorporating multiple desired properties into the diffusion
model (Gruver et al, 2023) can be straightforwardly adding the derived MGD ∇F (x)
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Table 1 The MOO problem vs. the MOG problem. The generation quality in MOG is
usually modeled based on the given dataset X ⊂ X , where X denotes a low-dimensional
manifold embedded in the high dimensional space Rd.

objectives decision/data space generation quality

MOO
F (x) = [f1(x), f2(x), . . . , fm(x)]

x ∈ Rd %

MOG x ∈ X ,X ⊂ Rd !

in Eq.(4) to the noise predictor ϵ∗θ(xt, t) at each denoising step, namely,

xt−1 =
1√

1− βt

(
xt −

βt√
1− αt

(
ϵ∗θ (xt, t) + λ∇F (x)

))
+
√

βtzt, (7)

where t = T, T − 1, . . . , 1. λ is a trade-off hyper-parameter which balances the genera-
tion quality (i.e., the noise predictor ϵ∗θ(xt, t)) and multiple-objectives (i.e., the MGD
∇F (x)). Note that an inappropriate λ may lead to unsatisfied samples which either
suffer from low quality or fail to possess required properties (Refer to experimental
observations in Section 5).

4 Multi-Objective Generation

As discussed above, optimizing generative models in terms of m objectives aims to
produce samples that cannot be simultaneously improved for all objectives, namely,
Pareto optimality (see Definition 1). Meanwhile, the generated samples are required
to be as realistic as the training samples, which is usually achieved by enforcing
distribution alignment between the generated samples and the training samples.

MOG compared with MOO

As shown in Table 1, both the MOO and MOG share the same objectives F (x) but
differ in the space that x resides in, which is termed as “decision space” or “solution
space” in the MOO problem (Chinchuluun and Pardalos, 2007) and is termed as
“data space” in the MOG problem (Gruver et al, 2023; Wang et al, 2024). To be
specific, the decision space of the MOO problem is defined as the whole space of
Rd (Cheng et al, 2017), while the data space of the MOG problem only resides in a
low-dimensional manifold X embedded in Rd (a.k.a. the ambient space) (Fefferman
et al, 2016; Roweis and Saul, 2000; McInnes et al, 2018). Such a difference highlights
that the objectives to be optimized for MOG are only meaningful within the data
manifold. When simply applying MOO algorithms to search for solutions in the high-
dimensional sample space, the obtained solutions cannot guarantee residing within
the data manifold, thus resulting in very low data quality (i.e., invalid samples in
Fig. 1(a)) and a loss of practicability (Sanchez-Lengeling and Aspuru-Guzik, 2018).

To sum up, the necessity to concurrently consider generation quality distinguishes
the MOG problem from the MOO problem. Specifically, a dataset with real samples
is required to define the data manifold on which the generated samples are expected
to reside (Eq.(8)).

7



4.1 Constrained Optimization for MOG

A straightforward solution of MOG is to take consideration of generation quality as
an additional objective and formulate it into a m + 1 objectives problem. However,
the heterogeneity of multiple objective optimization (usually defined w.r.t. a single
sample) and the distribution alignment (defined w.r.t. a dataset) would bring out
the optimization difficulty for the resultant MOO. Although it is feasible to simplify
the distribution divergence w.r.t. a dataset as quality scores for individual samples in
some deep generative models (Arjovsky et al, 2017), it is still challenging to obtain
desired solutions that achieve Pareto optimality on m objectives from the optimization
of m + 1 objectives which explore a much larger space, as empirically verified in
the experiments. In addition, the complexity of multi-objective optimization increases
significantly with the number of objectives (Ishibuchi et al, 2008).

Instead of formulating a complex and ineffective m + 1 objective problem, we
implement the multi-objective generation through a tailor-designed constrained opti-
mization problem upon m property objectives. Such a formulation also allows us to
stress respective significance of data generation and m-objective optimization, instead
of treating them equally important. Specifically, let pθ(x) denote the target data dis-
tribution parameterized by θ, and p0 denote the distribution of the solution samples on
the Pareto front, our constrained optimization problem can be formulated as follows

min
θ

D [qdata(x)||pθ(x)] s.t. D [p0(x)||pθ(x)] ≤ ε. (8)

where D(·, ·) denotes the distribution divergence and ε is a small positive value.
The loss in Eq.(8) controls the generation quality, which ensures the quality of the

generated data as realistic as possible. The constraint in Eq.(8) ensures the generated
data x ∼ pθ(x) to be Pareto optimal (with a small bearable error). Overall, Eq.(8)
provides certain quality assurance while obtaining samples that can approach Pareto
optimality of multiple property objectives.

4.2 Langevin Dynamics for Data Distribution Approximation

It is difficult to directly solve Eq.(8) when both qdata(x) and p0(x) are unknown. Moti-
vated by those widely-developed techniques of sampling algorithms for approximating
data distribution (Andrieu et al, 2003; Song and Ermon, 2019; Liu et al, 2021a), we
develop Langevin dynamic-based sampling techniques to solve Eq.(8). Specifically,
Langevin dynamics are capable of generating samples from a given probability dis-
tribution q(x) solely by utilizing its score function ∇ log q(x). Given an initial value
xT ∼ N (0, I), the Langevin method recursively computes the following:

xt−1 = xt − κg(xt) +
√
2κz, t = T, T − 1, . . . , 0, (9)

where κ is the step size and can be fixed or dynamic, z is sampled from the stan-
dard normal distribution N (0, I) and g(xt) is the update direction for xt, equal to
∇ log q(xt). The distribution of x0 will be close to the given data distribution q(x)
when κ → 0 and T → ∞ under some regularity conditions (Welling and Teh, 2011).
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Before deriving the proper gradient g(xt) to approximate the distribution opti-
mized in Eq.(8) as a whole, we investigate the gradient-based strategies to optimize
D [qdata(x)||pθ(x)] and D [p0(x)||pθ(x)] via Langevin dynamics, separately.

Optimization of D [qdata(x)||pθ(x)] in Eq.(8). Actually, various generative models
are deduced to approximate the minimization of the KL divergence between the data
distribution qdata(x) and the model distribution pθ(x) (Kingma and Welling, 2014;
Song et al, 2021a; Papamakarios et al, 2021). Here, we choose diffusion models as
the representative for optimizing D [qdata(x)||pθ(x)] given their equivalent form to
Eq.(9) (Ho et al, 2020; Song et al, 2021b). Particularly, the time-dependent predicted
noise ϵ∗θ (xt, t) in Eq.(6) is the update direction g(xt) in anneal Langevin dynamics
with a dynamic step size ηt:

xt−1 = xt − ηtϵ
∗
θ (xt, t) +

√
2ηtz. (10)

Consequently, the distribution of pθ(x0) will approach qdata(x) (Song et al, 2021a).
Optimization of D [p0(x)||pθ(x)] in Eq.(8). On the other hand, we can inte-

grate MGD (Eq.(4)) into Langevin dynamics to optimize D [p0(x)||pθ(x)], aiming to
approximate the distribution of the Pareto set p0(x) upon convergence. Namely,

xt−1 = xt − η∇F (xt) +
√

2ηz, (11)

where η is a fixed step size. The distribution of x0 will converge to p0(x), as
demonstrated in Theorem 3.3 of Liu et al (2021a).

4.3 Pareto-guided Diffusion Model

Based on the above analysis, the key to solving the constrained optimization
problem (Eq.(8)) is to design a proper strategy for unifying the optimization of
D [qdata(x)||pθ(x)] and D [p0(x)||pθ(x)] within the framework of Langevin dynamic
sampling. Therefore, we can indirectly solve Eq.(8) by designing the following
strategies to update the gradient g(xt) in Eq.(9):
1) If the sample xt is far away from the Pareto front (constraint violation), g(xt) is

chosen to assure Pareto improvement (i.e., decreasing all the m objectives) to xt.
The amount of Pareto improvement is determinant by the distance of xt to the
Pareto front.

2) If there are multiple directions that can yield Pareto improvement (constraint
violation), the direction of Pareto improvement that decreases D [qdata(x)||pθ(x)]
most (reducing loss) is chosen as g(xt).

3) If xt is close to the Pareto front (constraint satisfaction), i.e., having a
small ∥∇F (xt) ∥ according to Definition 2, g(xt) is chosen to fully optimize
D [qdata(x)||pθ(x)] (reducing loss).

Following Ye and Liu (2022), we design a new objective based on the gradients to
achieve the above conditions. To be specific, since ϵ∗θ (xt, t) is the gradient for optimiz-
ing D [qdata(x)||pθ(x)], and ∇F (x) is the gradient for optimizing D [p0(x)||pθ(x)], the

9



integrated gradient g(xt) can be solved by the following objective:

g(xt) = argmin
g

1

2
∥g − ϵ∗θ (xt, t) ∥2

s.t. ∇fi(x)
T g ≥ ϕt, ∀i = 1, 2, . . . ,m,

ϕt =

{
α∥∇F (xt) ∥ if ∥∇F (xt) ∥ > e

−∞ otherwise
,

(12)

where α and e are positive hyper-parameters. The constraint in Eq.(8) can be approx-
imated by the small gradient norm ∇F (x) due to Pareto stationarity (Definition 2).
In particular, when ∥∇F (xt) ∥ > e, ϕt is set to be proportionate to ∥∇F (xt) ∥. This
will encourage the gradient g(xt) to have positive inner products with all ∇fi(x),
approximating ∇F (x). Meanwhile, the amount of Pareto improvement is based on
the distance of xt to the Pareto front. If ∥∇F (xt) ∥ has a very small norm, which
means that the sample xt is close to the Pareto front, we will have gt(x) = ϵ∗θ (xt, t)
with ϕt = −∞. Therefore, samples will be updated with a pure gradient descent on
D [qdata(x)||pθ(x)] without taking into account the m objectives {fi(x)}mi=1, namely,
λi,t = 0,∀i ∈ [m].

At the situation of ∥∇F (xt) ∥ > e, the solution g(xt) of Eq.(12) is expressed as:

g(xt) = ϵ∗θ (xt, t) +
m∑
i=1

λi,t∇fi(xt), (13)

where {λi,t}mi=1 is the solution of the following dual problem:

max
λi,t∈Rm

+

−1

2
∥ϵ∗θ (xt, t) +

m∑
i=1

λi,t∇fi(xt)∥2 +
m∑
i=1

λi,tϕt. (14)

Substituting the derived gradient g(xt) (Eq.(13)) into Eq.(9) and adopting a dynamic
step size ηt, we can obtain a new kind of controllable diffusion modeling, which is
named as PaRetO-gUided Diffusion model (PROUD):

xt−1 = xt − ηt

(
ϵ∗θ (xt, t) +

m∑
i=1

λi,t∇fi(xt)

)
+
√

2ηtz. (15)

PROUD does not modify the training process of diffusion models but only updates
gradients during the generative process, as summarized in Algorithm 1. Therefore, our
PROUD can be plugged into any pre-trained diffusion model to gain post-hoc control
during the generative process.

In contrast to existing methods that crudely combine generative models with
multi-objective optimization techniques using a predefined balance coefficient, our
constrained optimization formulation (Eq.(8)) allows to dynamically infer the balance
coefficient (Eq.(14)), prioritizing the guarantee of Pareto optimality.
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Algorithm 1 Pareto-guided Reverse Diffusion Process for a Single Sample

1: Input: a pre-trained unconditional diffusion model ϵ∗θ, the dynamic step
size {ηt}Tt=1, multiple property objectives {fi}mi=1.

2: Hyper-parameters: α and e in Eq.(12).
3: Initialize: xT ∼ N (0, I).
4: for t = T, T − 1, . . . , 0 do
5: calculate the multiple gradient descent: ∇F (xt) based on Eq.(4);
6: if ∥∇F (xt)∥ > e then # calculate the weight coefficients
7: {λi,t}mi=1 takes the solution of Eq.(14) with ϕt = α∥∇F (x)∥;
8: else
9: λi,t = 0, ∀i ∈ [m];

10: end if
11: calculate the denoising gradient: g(xt) = ϵ∗θ (xt, t) +

∑m
i=1 λi,t∇fi(xt) as Eq.(13);

12: sample z ∼ N (0, I);
13: denoise the sample: xt−1 = xt − ηtg(xt) +

√
2ηtz;

14: end for
15: Output: the sample x0 which meets Pareto optimality of m objectives.

4.4 Diversity Regularization for Diversified Pareto Solutions

In practice, MGD integrated with Langevin dynamics fails to obtain diversified Pareto
solutions although it can be guaranteed to obtain solutions on the Pareto front (Liu
et al, 2021a). To make the solutions be evenly distributed on the Pareto front, we con-
sider adding a diversity regularization, which can be enforced either in the sample space
or the functionality space. Because we are interested in high-dimensional data gener-
ation, imposing larger distances between samples can be challenging. Furthermore, a
significant separation between samples does not necessarily ensure a substantial dis-
tinction between their respective functionalities. Therefore, we define the diversity
regularization based on the objective values.

Suppose there are N particles {x1, x2, . . . , xN} in each step of our PROUD. We
omit the subscript t of the time step for simplicity. The diversity loss is defined to
encourage the dissimilarity of the objective values:

l(x1, x2, . . . , xN ) =
∑
i̸=j

1

∥F (xi)− F (xj)∥2
. (16)

The diversity loss Eq.(16) is added to the main objective in Eq.(8) with a weight
coefficient γ.

5 Experiments

In this section, we evaluate the effectiveness of our PROUD in optimizing image gener-
ation and protein generation with multiple conflicting objectives. We study white-box
multi-objectives in this work and particularly focus on using MGD as the MOO tech-
nique to obtain the gradient from multi-objectives. The exploration of the black-box
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setting, as mentioned in Stanton et al (2022), is discussed in the conclusion and remains
for future work.

Dataset. In the task of image generation, we use the CIFAR10 (Krizhevsky et al,
2009) dataset, which consists of 60,000 color images, each with a size of 3 × 32 × 32,
distributed across 10 classes. Regarding protein generation, following Gruver et al
(2023), the experiment was conducted on the paired Observed Antibody Space (pOAS)
dataset (Olsen et al, 2022), which comprises 90, 990 antibody sequences, each processed
to a fixed length of 300.

Baselines. First, we include the most closely-related and SOTA work in MOG that
applies the MOO technique to the deep generative model (Gruver et al, 2023). This
baseline is termed as “DM+m-MGD”, where the MGD of m objectives is used to
guide the generation of diffusion models (DM). We also include the baseline regarding
single-objective generation, termed as “DM+single”. It fuses multiple objectives into
a single objective and uses the gradient of the obtained single objective to guide the
generation of diffusion models. Another considered baseline is “m+1-MGD”. It treats
the objective of the diffusion model as an additional objective and formulates multi-
objective generation as the optimization of m + 1 objectives. MGD is then applied
directly for the resultant m+1 objectives. To stress the necessity of quality assurance
in the generation problem, which is the core difference between MOG and MOO, we
include the MGD of m objectives as the baseline, called “m-MGD”.

For all methods equipped with MGD, the diversity regularization (Eq.(16)) is
included except for m+1-MGD since its extra objective fm+1(x), i.e., data likelihood,
is not accessible for the diffusion models.

Metrics. In terms of generation quality, the Frechet Inception Distance
(FID) (Heusel et al, 2017) is adopted as the metric for image quality, while the log-
likelihood assigned by ProtGPT (Ferruz et al, 2022) is considered as the metric for the
quality of protein sequences following Gruver et al (2023). Concerning Pareto opti-
mality, Hypervolume (HV) (Zitzler and Thiele, 1999) is adopted to measure how well
the methods approximate the Pareto set.

5.1 Image Generation

We follow Liu et al (2021b)3 to optimize CIFAR10 images with the objectives that
force the middle of an image to be a specified color square.
(1) Controllable generation on CIFAR10 with two objectives (Fig. 1(b)):

• f1(x) = ∥xΩ−1Ω∥22, where x represents the entire image, and xΩ ⊆ x is an image
patch in the region Ω, corresponding to the square at the center of the image.
Similar to the practical relevance shown in Liu et al (2021b), this objective is
to restrict the center of the generated images to be a white square, which is
to sample CIFAR10 images that exhibit white color in their middle. The patch
size is set to 3× 8× 8 in the experiment.

3As demonstrated in Section 3 and Figure 3(b) of their study, an objective that forces the center of
generated images to be a black square can be used for constrained sampling on CIFAR10. Accordingly,
they obtain samples that lie on the CIFAR10 data manifold and exhibit the black square in the middle,
such as “black plane” and “black dog” images which contain a black square (smaller size than the object)
in the middle. This task can be considered as image outpainting (Yao et al, 2022), namely, extrapolating
images based on specified color patches on CIFAR10.
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• f2(x) = ∥xΩ − 0.5Ω∥22 with the similar setting. This objective is to constrain
the center to be a grey square.

The desired generation for these two objectives would be those CIFAR10-like images
with patches in normalized RGB color values4 between [0.5, 0.5, 0.5] (grey) and [1, 1,
1] (white), in the middle, according to Ishibuchi et al (2013); Li et al (2017). Please
refer to Appendix B for more details.
(2) Controllable generation on CIFAR10 with three objectives:

• f1(x) = ∥xΩ−aΩ∥22, where x represents the entire image, and xΩ ⊆ x is an image
patch in the region Ω, corresponding to the square at the center of the image.
This objective is to restrict the center of the generated images to be a black
square. The patch size is set to 3× 8× 8 in the experiment. aΩ = [0, 0, 0]8×8.

• f2(x) = ∥xΩ − bΩ∥22 with the similar setting. This objective is to constrain the
center to be a deep red square. bΩ = [0.5, 0, 0]8×8.

• f3(x) = ∥xΩ − cΩ∥22 with the similar setting. This objective is to constrain the
center to be a deep yellow square. cΩ = [0.5, 0.5, 0]8×8.

The desired generation for these three objectives would be those CIFAR10-like images
with patches in normalized RGB color values belonging to the convex triangle formed
by the points [0, 0, 0] (black), [0.5, 0, 0] (deep red) and [0.5, 0.5, 0] (deep yellow). Please
refer to Appendix B for more details. We adopt the diffusion model used in Song and
Ermon (2020) as the backbone for CIFAR10 image generation.

We sample images from our PROUD and other baselines using the same seeds for
the sake of comparison. From Fig. 2, we can observe that: (1) our PROUD and two
baselines, DM+m-MGD and m-MGD, can successfully generate harmonious images
consistent with the patch-level constraints imposed by two conflicting objectives.
Among them, the generated images of our PROUD exhibit better quality than DM+m-
MGD in some instances, as the latter tends to sacrifice generation quality to excessively
meet Pareto optimality of the objectives due to the lack of a mechanism to empha-
size the quality of generated samples. (2) m + 1-MGD fails to generate satisfactory
images consistent with the patch-level constraints, as the new objective (i.e, generation
quality) biases the optimization of the original two objectives. Although the Pareto
set of the original m-objectives resides within that of the m + 1-objectives (Tanabe
and Ishibuchi, 2020), the proportion is negligible even when sampling a large num-
ber of images. Refer to Fig. 3(d)&(f) and Fig. 4(d)&(f) for more details. (3) m-MGD,
which does not consider generative quality in its optimization, generates meaningless
images because the optimization of multiple objectives in the data generation task
is only meaningful within the data manifold, as image data usually concentrate on
low-dimensional manifolds embedded in a high-dimensional space.

For the MOG setting on CIFAR10 optimized with two objectives, we randomly
select 1,000 generated images for each method, and calculate their objective values
[f1(x), f2(x)], respectively. Fig. 3 shows that: (1) our PROUD (Fig. 3(a)) and two
baselines DM+m-MGD (Fig. 3(b)) and m-MGD (Fig. 3(e)) successfully generate sam-
ples which can cover the entire Pareto front. Among them, our PROUD and m-MGD
spread more evenly over the Pareto front. (2) DM+single only covers a partial Pareto

4RGB values [0, 255] are divided by 255.
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.002)
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(b) Three objectives

Fig. 2 Generated images from our PROUD and various baselines on CIFAR10 under two/three
conflicting patch-based objectives. The scores under each image refer to its objective values
[f1(x), f2(x)]/[f1(x), f2(x), f3(x)], respectively, where those objective values do not reside on the Pareto
front are marked in red.

front as shown in Fig. 3(c), because simply averaging multiple objectives into a sin-
gle objective fails to explore the trade-off between multiple objectives and leads to
insufficient solutions. (3) As discussed in Fig. 2, m + 1-MGD explores a much larger
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(d) m+ 1-MGD (Cropped)
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(f) m+ 1-MGD (full)

Fig. 3 Approximation of Pareto front of various methods on CIFAR10 optimized with two objectives.
Each point denotes a generated sample, 1,000 in total, where the coordinate corresponds to its objective
values. The depth of color represents sample density, the deeper the higher.

solution space (Fig. 3(f)), while only a few of them are located at the Pareto front of
the original m objectives (Fig. 3 (d)).

For the MOG setting on CIFAR10 optimized with three objectives, we randomly
select 5,000 generated images for each method and calculate their objective values
[f1(x), f2(x), f3(x)], respectively. Fig. 4 shows that our PROUD exhibits significant
superiority in evenly covering the Pareto front under this more challenging setting.
This is because our constrained optimization formulation can better coordinate the
generation quality and the optimization for multi-objectives, while ensuring sample
diversity (Eq.(8), Eq.(16)). Although it is possible to force the two baselines DM+m-
MGD and m-MGD to exhibit better diversity by setting a large diversity coefficient γ,
but this would cause the samples they generate to violate Pareto optimality, as shown
in Fig. A2 and Fig. A3 in the Appendix.

To further demonstrate the superiority of our PROUD on multi-objective gen-
eration, we collect the quantitative evaluation for Pareto approximation and image
quality in the left part of Table 2 by sampling 50, 000 images. It shows that: our
PROUD achieves the best or the second best values in both two metrics, i.e., HV for
Pareto approximation and FID for image quality. It demonstrates our claim that our
PROUD can provide certain quality assurance for generated samples approaching the
Pareto set of multiple properties. On the contrary, either single or multiple objective
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(a) PROUD

(9.83× 10−5)

(b) DM+m-MGD

(3.10× 10−4)
(c) DM+single

(6.89× 10−4)

(d) m+ 1-MGD

(Cropped, 2.28× 10−3)
(e) m-MGD

(3.27× 10−4)
(f) m+ 1-MGD

(full, 2.50× 10−3)
Fig. 4 Approximation of Pareto front of various methods on CIFAR10 optimized with three objec-
tives. Each point denotes each generated sample, 5,000 in total, where the coordinate corresponds to its
objective values. The depth of color represents sample density, the deeper the higher. The values in the
brackets are earth mover distances between the generated samples and the ground-truth Pareto solu-
tions. We add this measure to indicate that our generated samples are indeed close to the Pareto front
given the 3D visualization.

generation baselines, i.e., DM+single and DM+m-MGD, would inevitably sacrifice
generation quality to excessively optimize the objectives.

5.2 Protein Sequence Generation

To further verify our model in more challenging applications, we design multiple-
objective generation task on the pOAS dataset which aims to optimize two conflicting
objectives for antibody sequences:

Table 2 Quantitative evaluation for Pareto approximation and generation quality. Bolded values
and underlined values indicate the best results and the second best results, respectively. The
Friedman & Nemenyi test in Appendix B demonstrates that our PROUD is significantly better than
other baselines. “-” denotes that the value is not available as no valid data are generated.

Method
CIFAR10 (2-obj) CIFAR10 (3-obj) pOAS

HV↑ (10−2) FID↓ HV↑ (10−3) FID↓ HV↑ ProtGPT↑

PROUD (ours) 5.21±0.00 31.39±0.05 3.26±0.00 44.22±0.13 2472.55±60.15 -645.93±0.99

DM+m-MGD 5.20±0.01 38.72±0.36 3.26±0.01 49.90±0.14 2289.61±65.12 -692.80±0.34

DM+single 4.77±0.01 36.35±0.47 2.21±0.00 57.77±0.05 2302.21±58.25 -682.26±0.49

m+ 1-MGD 5.17±0.00 11.21±0.10 2.87±0.03 11.80±0.05 838.74±14.08 -662.86±0.76

m-MGD 5.21±0.00 - 3.26±0.01 - - -
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Fig. 5 The approximation of Pareto front (i.e., generated protein sequences) of various methods. We
cannot visualize the results of m-MGD because all its generated protein sequences are invalid, resulting
in nonexistent SASA evaluations (f1).

• f1(x), the solvent accessible surface area (SASA) of the protein’s predicted struc-
ture. Please refer to Ruffolo et al (2023) for detailed procedures of calculating the
SASA value using the protein sequences.

• f2(x), the percentage of beta sheets (%Sheets), which is measured on protein
sequences directly (Cock et al, 2009).

The ground-truth Pareto front is not available due to the complexity of property
objectives. Since the evaluation functions for SASA and %Sheet are not differentiable,
we adopt the network predictors as differential surrogate functions for all methods.
We apply the ground-truth evaluation functions for calculating the HV values on the
generated samples. We adopt the discrete diffusion model in Gruver et al (2023) as
the backbone for protein sequence generation.

To demonstrate the superiority of our PROUD in multi-objective protein gener-
ation, we initially sample 5, 000 protein sequences for each method and collect the
non-dominated samples based on their two target properties, as depicted in Fig.5. The
observations are as follows: (1) DM+single exhibits a wide coverage of the objective
values. This could be attributed to the fact that the noise in discrete diffusion models
can bring out large diversity (Gruver et al, 2023). By incorporating MGD into diffusion
models, PROUD and DM+m-MGD achieve larger coverage of the objective values.
This verifies the superiority of MOG over SOG. Our PROUD and DM+m-MGD
emphasize respective Pareto improvement of the objectives. Nevertheless, Table 2
shows that our PROUD achieves a better HV. (2) Similar to the image generation
task, m+ 1-MGD demonstrates a much poorer approximation of the Pareto front for
the original m objectives. Meanwhile, m-MGD even fails to generate any valid protein
sequences, as the SASA evaluation (f1(x)) for all its generated samples is nonexistent.
This further highlights the difference between MOG and MOO.
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Table 3 Sensitivity analysis on α and e in Eq.(12). We retain more decimal places here to
demonstrate the subtle differences between results.

Metric
γ = 0.2, e = 0.03 γ = 0.2, α = 0.5

α = 0.1 α = 0.5 α = 1 e = 0.01 e = 0.03 e = 0.05

FID 31.58963073 31.48232218 31.5896311 31.58966697 31.48232218 31.58966696
HV 0.05211343 0.05211350 0.05211343 0.05211343 0.05211350 0.05211343

Table 4 Sensitivity analysis on γ. α and e are set to 0.5 and 0.03,
respectively. The best results are marked in bold.

Metric γ = 0 γ = 0.01 γ = 0.1 γ = 0.2 γ = 0.3 γ = 1

FID 34.80 30.98 31.80 31.48 31.63 33.59
HV 0.0483 0.0498 0.0521 0.0521 0.0521 0.0521

Furthermore, we collect the quantitative evaluation for Pareto approximation and
protein quality in the right part of Table 2 by sampling 5, 000 protein sequence5.
Benefiting from our constrained-optimization formulation, our PROUD can avoid
unnecessary loss of protein quality compared to other MOG/SOG counterparts,
DM+m-MGD and DM+single. This improvement will greatly increase the practicality
of its generated samples.

5.3 Hyper-parameter Sensitivity Study

We study PROUD with different configurations of the hyper-parameters, namely, α
and e in Eq.(12) as well as the diversity coefficient γ in Eq.(16). The experiments are
conducted on CIFAR10, with the same setting as Section 5.1.

We set α as 0.1, 0.5, 1 and e as 0.01, 0.03, 0.05, respectively. We observe in Table 3
that PROUD is not sensitive to the choice of the hyper-parameters α and e.

We set γ as 0, 0.1, 0.2, 1. The results are summarized in Fig. 6(a) to Fig. 6(d),
showing that: (1) With an appropriate diversity coefficient, our PROUD can well cover
the Pareto front. (2) Without the diversity regularization, PROUD can only obtain
a small set of Pareto solutions. This demonstrates the necessity of the diversity loss,
consistent with the finding in the former work (Liu et al, 2021a). (3) With a too large
value of γ, the generated samples could fall outside the Pareto front. The effect of the
diversity coefficient on DM+m-MGD (Fig. 6(e) to Fig. 6(h)) is similar.

To further investigate the effects of the diversity coefficient on the generation qual-
ity, we collect FID results in Table 4. With γ = 0.2, PROUD obtains both the best
FID and HV, which is thus set as the hyper-parameter used in Section 5.1.

To demonstrate that the single-objective generation would fail to cover the Pareto
front even with a uniform grid of weighting, we set the weight coefficient w for combin-
ing two objectives into a single objective in DM+single “w× f1(x) + (1−w)× f2(x)”
as 0 to 1 with a step 0.1. We put the results of 0, 0.1, 0.5, 1 in Fig. 6(i) to Fig. 6(l)
and rest in Appendix. With w = 0, 0.1, 0.2, 0.3, 0.4, the single objective is dominated

5We only sample 5, 000 protein sequence since the computation cost of SASA values is very high.
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(c) γ = 0.2
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(f) γ = 0.1
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(g) γ = 0.2
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(h) γ = 1
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(j) w = 0.1
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(k) w = 0.5
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(l) w = 1

Fig. 6 Analysis on the effects of the diversity coefficient γ in Eq.(16) to our PROUD (1st row) and
DM+m-MGD (2nd row). As DM+single (3rd row) degenerates to SOG and does not have the diversity
regularization, we conduct sensitivity analysis on its weight coefficient for combining two objectives, i.e.,
(1− w)f1 + wf2. The depth of color represents sample density, the deeper the higher.

by f2(x). Consequently, the generated samples achieve the smallest value for f2(x)
but the largest one for f1(x); vice versa. With an equal weight, the generated sam-
ples are supposed to obtain the comprise value between two objectives, i.e., (0.0625,
0.0625). We notice that the generated samples cover a small range around this point.
This diversity could result from the diffusion noise in diffusion models.

6 Conclusion

This paper studies the problem of optimizing deep generative models with multiple
conflicting objectives. We highlight this problem setting by treating the optimization
of samples with multiple properties and the process of sample generation as a unified
task. By analyzing the connections and differences from multi-objective optimiza-
tion, we introduce a constrained optimization formulation to solve the multi-objective
generation problem, based on which we developed PROUD. Our experiments demon-
strate the efficacy of PROUD in both image and protein sequence generation. While
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we explored the white-box multi-objectives in this work, it would be interesting to
explore our PROUD in the black-box setting in the future. The multiple gradient
descent technique used can be replaced by methods such as Bayesian multi-objective
optimization (Stanton et al, 2022).

Declarations

Funding. This work was supported by the Agency for Science, Technology and
Research (A*STAR) Centre for Frontier AI Research, the A*STAR GAP project
(Grant No.I23D1AG079), and the AISG Grand Challenge in AI for Materials Discov-
ery (Grant No. AISG2-GC-2023-010).
Competing interests. The authors have no financial or non-financial interests to
disclose that are relevant to the content of this article.
Ethics approval. Not applicable.
Consent to participate. Not applicable.
Consent to publish. Not applicable.
Availability of data and materials. All datasets used in this work are available
online and clearly cited.
Code availability. The code of this work will be publicly released on github.
Authors’ contributions. Idea: YY; Methodology & Experiment: YY, YP; Writing
- comments/edits: all.

References

Afshari H, Hare W, Tesfamariam S (2019) Constrained multi-objective optimization
algorithms: Review and comparison with application in reinforced concrete struc-
tures. Applied Soft Computing 83:105631. https://doi.org/10.1016/J.ASOC.2019.
105631

Andrieu C, De Freitas N, Doucet A, et al (2003) An introduction to mcmc for machine
learning. Machine learning 50:5–43. https://doi.org/10.1023/A:1020281327116

Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial net-
works. In: International Conference on Machine Learning, pp 214–223, URL https:
//proceedings.mlr.press/v70/arjovsky17a.html

Borghi G, Herty M, Pareschi L (2023) An adaptive consensus based method for multi-
objective optimization with uniform pareto front approximation. Applied Mathe-
matics & Optimization 88(2):58. https://doi.org/10.1007/s00245-023-10036-y

Cheng R, Li M, Tian Y, et al (2017) A benchmark test suite for evolutionary many-
objective optimization. Complex & Intelligent Systems 3:67–81. https://doi.org/10.
1007/s40747-017-0039-7

Chinchuluun A, Pardalos PM (2007) A survey of recent developments in multiobjec-
tive optimization. Annals of Operations Research 154(1):29–50. https://doi.org/10.

20

https://doi.org/10.1016/J.ASOC.2019.105631
https://doi.org/10.1016/J.ASOC.2019.105631
https://doi.org/10.1023/A:1020281327116
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.1007/s00245-023-10036-y
https://doi.org/10.1007/s40747-017-0039-7
https://doi.org/10.1007/s40747-017-0039-7
https://doi.org/10.1007/S10479-007-0186-0
https://doi.org/10.1007/S10479-007-0186-0


1007/S10479-007-0186-0

Cock PJ, Antao T, Chang JT, et al (2009) Biopython: freely available python tools for
computational molecular biology and bioinformatics. Bioinformatics 25(11):1422–
1423. https://doi.org/10.1093/bioinformatics/btp163

Dathathri S, Madotto A, Lan J, et al (2020) Plug and play language models: A simple
approach to controlled text generation. In: International Conference on Learning
Representations, URL https://openreview.net/forum?id=H1edEyBKDS

Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. John
Wiley & Sons
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Appendix A Complete sensitivity analysis for
single-objective generation

We set the weight coefficient w for combining two objectives in DM+single “w ×
f1(x) + (1− w)× f2(x)” as 0 to 1 with a step 0.1. The results is shown in Fig. A1:

• when w < 0.5, the resultant final objective is dominated by f2(x). Consequently,
the leading objective is optimized to the best where all the generated samples
have the smallest value for f2(x) but the largest one for f1(x) .

• when w > 0.5, the resultant final objective is dominated by f1(x). Therefore, the
generated samples achieve the smallest value for the first objective but the largest
one for the second objective.

• when w = 0.5 = 1
m , the generated samples are supposed to obtain the comprise

value between f1(x) and f2(x), i.e., (0.0625, 0.0625). We notice that the generated
samples cover a small range around this point. This diversity could result from
the diffusion noise in diffusion models.
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(i) w = 0.8
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Fig. A1 Sensitivity analysis on the weight coefficient for combining two objectives, i.e., (1−w)f1+wf2
in DM+single. The depth of color represents sample density, the deeper the higher.

27



(a) γ = 0.8 (b) γ = 1 (c) γ = 1.5
Fig. A2 Different diversity coefficient γ for DM+m-MGD on CIFAR10 optimized with three objectives.
1,000 generated samples are randomly selected for visualization.

(a) γ = 0.01 (b) γ = 0.05 (c) γ = 0.1
Fig. A3 Different diversity coefficient γ for m-MGD on CIFAR10 optimized with three objectives.
1,000 generated samples are randomly selected for visualization.

(a) PROUD (b) DM+m-MGD (c) m-MGD

Fig. A4 Approximation of Pareto front of various methods on CIFAR10 optimized with three objec-
tives. The first row presents 50,000 generated samples while the second row presents non-dominated
points out of 50,000 sample points, verifying the HV results obtained in Table 2.

Appendix B More Experimental Settings and
Analyses
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Image Generation

According to Ishibuchi et al (2013); Li et al (2017)6, we can obtain that: (1) the
Pareto solutions of the two objective setting are the points on the line between 1Ω and
0.5Ω. Namely, the Pareto solutions are {x|xΩ = κΩ, κΩ ∈ [0.5Ω, 1Ω]}7. When taking
images from CIFAR10 based on the Pareto set (Fig. B6), we follow Liu et al (2021b)
to sample images in a small neighborhood around κΩ, namely, ∥xΩ −κΩ∥22 ≤ ϵ, where
ϵ = 8× 10−4. (2) The Pareto solutions of the three objective setting are the points on
the convex polygonal formed by three points aΩ, bΩ, cΩ. For easy understanding, we
assume Ω = 3 × 1 × 1, which is actually to constrain the middle point of CIFAR10
images to be certain colors.

We visualize the Pareto front of these two settings in Fig. B5. Specifically, for the
two objective setting, the Pareto optimal points lie on the line between [1, 1, 1] and
[0.5, 0.5, 0.5] (Fig. B5(a)), which physically denote RGB values (normalized, RGB
values [0, 255] divided by 255). Then, we calculate the objectives values [f1(x), f2(x)]
for these points accordingly, shown in Fig. B5(b). Fig. B5(c) and (d) are plotted for
the three objective setting in a similar way. According to their Pareto fronts, we select
[0.25, 0.25] and [0.2, 0.1, 0.2] as reference points to calculate the hypervolume (HV)
for the two objective setting and the three objective setting in Table 2, respectively.

We sample CIFAR10 image using the constraint with different patch sizes to
demonstrate its effect in Fig. B7. With a smaller size of the region Ω, more CIFAR10
images will meet the constraint.

Protein Sequence Generation

Our experiments in Section 5.2 adopted the same dataset and objectives as that in
Section 5.2 of Gruver et al (2023). Note that we did not include their other experiments,
because the experiment in their Section 5.1 is not a generation task equipped with
property optimization and the dataset for the experiment in Section 5.3 and 5.4 has
not been released due to private data. We select [1 × 104, 0] as a reference point to
calculate the HV for this task.

Justification of Our Experiment Designs

Our experiment designs can appropriately justify the motivation of the MOG prob-
lem. Both CIFAR10 and protein datasets are real-world datasets whose data lie on
low-dimensional manifolds in high-dimensional space (Krizhevsky et al, 2009; Gruver
et al, 2023), thus applicable to our MOG problem setting. Meanwhile, the objectives
considered for CIFAR10 are indeed benchmark multi-objective optimization problems
with clear evaluations (Ishibuchi et al, 2013); the objectives considered for the pro-
tein design task represent real-world scenarios (Gruver et al, 2023). Lastly, Fig. 2 and
Table 2 demonstrate the necessity of considering generation quality, as the genera-
tion quality of all baseline methods suffers to some extent when optimizing multiple
properties.

6Our problem setting is slightly different as we take the distance square in order to obtain a non-linear
shape of the Pareto front. We also refer reviewer to example-1 in Liu et al (2021a) that defines a same
two-objective problem but with 1-D decision variable for easy understanding.

7We use [0.5Ω, 1Ω] to denote image patches in normalized RGB color values between [0.5, 0.5, 0.5] (grey)
and [1, 1, 1] (white).
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(a) Two objectives (data space)
(B) Two objectives (functionality space)

(c) Three objectives (data space) (d) Three objectives (functionality space)

Fig. B5 Pareto front of two and three objectives in data space and functionality space optimized for
CIFAR10 image generation.

Significant Test

We apply the Friedman test under the null hypothesis positing that all methods per-
form similarly, alongside the Nemenyi post-hoc test for pairwise comparisons among
the four methods (Demšar, 2006). The number of factors was set to four, given the
failure of m-MGD to produce qualified samples, leading to its exclusion. The dataset
comprised 30 instances, with each of the four methods independently evaluated five
times across three datasets, employing two evaluation criteria. The Friedman test
shows that τF = 18.24, greater than the critical value F3,87 = 2.709 when α = 0.05.
Therefore, the null hypothesis is rejected, which signifies a statistically significant dif-
ference among the four methods at the significance level of 0.05. Subsequent analysis
via the Nemenyi post-hoc test in Fig. B8 unequivocally demonstrates that our PROUD
exhibits marked superiority over the three baseline methods.
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[0, 0.25] [0.025, 0.1225] [0.0625, 0.0625]

[0.140625, 0.015625] [0.180625, 0.005625] [0.25, 0]

Fig. B6 Full resolution CIFAR10 images (3 × 32 × 32) in Fig. 1(b) of the manuscript. The red box
denotes the region Ω (3× 8× 8) in the two objectives in Section 5.1.

Ω (3× 6× 6, 19 images)

Ω (3× 8× 8, 7 images)

Ω (3× 10× 10, 3 images)

Fig. B7 Sampling CIFAR-10 images with regions of different patch sizes.

Fig. B8 Nemenyi post-hoc test over four methods.

Appendix C Discussions

The constrained MOO problem defines its decision space S on a constrained space
expressed using specified linear, nonlinear, or box constraints (Afshari et al, 2019;
Désidéri, 2018) in Rd. Consequently, it is different from our MOG problems, whose
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manifold is delineated by a given dataset X . Nevertheless, MOG problems could be
understood as a type of constrained MOO problem in a broader context.

Table C1 Comparison of the MOG problem with the relevant MOO problems.
The generation quality in MOG is usually modeled based on a given dataset
X ⊂ X , where X denotes a low-dimensional manifold embedded in a high
dimensional space Rd. F (x) = [f1(x), f2(x), . . . , fm(x)].

objectives decision/data space generation quality

MOO F (x) x ∈ Rd %
Constrained

MOO
F (x)

x ∈ S, S ⊂ Rd defined by
(non)linear or box constraints

%

MOG F (x) x ∈ X ,X ⊂ Rd !

32


	Introduction
	Related Work
	Preliminaries
	Multi-objective Optimization
	Diffusion Models

	Multi-Objective Generation
	MOG compared with MOO
	Constrained Optimization for MOG
	Langevin Dynamics for Data Distribution Approximation
	Pareto-guided Diffusion Model
	Diversity Regularization for Diversiﬁed Pareto Solutions

	Experiments
	Image Generation
	Protein Sequence Generation
	Hyper-parameter Sensitivity Study

	Conclusion
	Complete sensitivity analysis for single-objective generation
	More Experimental Settings and Analyses
	Image Generation
	Protein Sequence Generation
	Justification of Our Experiment Designs
	Significant Test

	Discussions

