
Boosting with Fewer Tokens: Multi-Query
Optimization for LLMs Using Node Text and

Neighbor Cues
Yujie Fang†, Xin Li†*, Yuangang Pan‡§, Xin Huang¶, Ivor W. Tsang‡§

†School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
‡Centre for Frontier AI Research, Agency for Science, Technology and Research, Singapore

§Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore
¶Department of Computer Science, Hong Kong Baptist University, Hong Kong, China

†{fangyujie,xinli}@bit.edu.cn,‡{Pan Yuangang, Ivor Tsang}@cfar.a-star.edu.sg,¶xinhuang@comp.hkbu.edu.hk

Abstract—Recent studies have explored querying large lan-
guage models (LLMs) to serve as predictors for graph mining
tasks on text-attributed graphs (TAGs), establishing a promising
paradigm that surpasses Graph Neural Networks (GNNs) in
scalability and generalization. However, the high token costs of
LLMs make this approach prohibitively expensive for large-scale
node queries, and effective multi-query optimization solutions
are currently lacking. By conducting information theory analysis
at the single query level, we have gained insights that enabled
the development of two multi-query optimization strategies:
token pruning and query boosting. The token pruning strategy
is designed to reduce token usage without compromising task
performance by identifying saturated node queries and pruning
tokens for these queries. Meanwhile, the query boosting strategy
is designed to enhance task performance by enriching the context
of unexecuted queries with pseudo-labels derived from previous
queries through strategic scheduling, thereby maximizing the
utility of these pseudo-labels. Extensive experiments applying
these two strategies, either jointly or individually, to various
existing methods demonstrate that the proposed approach serves
our intentions well. Besides, this paper offers a fresh methodology
for optimizing LLM processing of graph tasks, demonstrating
great potential. For most natural graph data benchmarks in the
field, it can save tokens by several orders of magnitude. For
example, on the Ogbn-Products dataset, it could theoretically
save up to 2× 109 tokens.

Index Terms—Multi-query optimization, graph mining, large
language models

I. INTRODUCTION

The ubiquitous presence of graphs in the real world has
fueled extensive applications of graph mining across diverse
industries, such as recommendation systems [1]–[3], fraud
detection [4]–[6], and biological analysis [7]–[9]. Traditional
graph mining methods primarily rely on Graph Neural Net-
works (GNNs); however, GNNs encounter significant chal-
lenges in practical deployments due to intrinsic limitations.
Specifically, the feature aggregation of GNNs necessitates that
the entire graph be fully known and processed collectively,
leading to two challenges: (i) Resource Demands on Large
Graphs [10], (ii) Inability to Handle Dynamic Nodes [11].
Additionally, GNNs necessitate a training phase, which poses

*Corresponding author.

Neighbor
Selection

Prompt Template

(Query Node Text)

(Neighbor Text)

LLM

GNN

PredictionPlease output the query
node category:

PredictionText-attributed Graph

Text Encoding

LLMs as Predictors

Traditional GNNs

(i) Large Graphs
(ii) Dynamic Nodes
(iii) Reliance on Labeled Data
(iv) Non-generalizable learning

Query optimization

High token cost

 Loss

Fig. 1. Schematic diagram of GNNs (top) and LLMs as predictors (bottom),
in the context of node classification tasks.

two further challenges: (iii) Reliance on Labeled Data [12].
(iv) Non-generalizable learning: GNNs struggle to conduct
inference on new graphs when their feature or label spaces
differ from those of the training graph [13]. In recent years,
numerous efforts have been made to improve GNN-based
systems to address these challenges. These improvements
include scalable GNNs designed to mitigate resource demands
on large graphs [14], [15], inductive GNNs that enhance the
handling of dynamic nodes [16], [17], and unsupervised GNNs
that decrease reliance on labeled data [18], [19]. Despite these
efforts, the challenge of Non-generalizable learning remains
inadequately addressed, and few approaches are capable of
effectively tackling the other three challenges simultaneously.

Recently, the remarkable abilities of large language models
(LLMs) have positioned them as powerful tools in the field
of data management. They are employed for various tasks
including data enrichment [20], data transformation [21], and
structured query language (SQL) generation [22]–[24], with
the objective of improving efficiency, scalability, traceability,
and beyond. For graph mining tasks, LLMs also offer new
opportunities to tackle the previously discussed challenges.
Recently, several studies [25]–[27] have investigated bypassing
GNNs altogether, directly querying LLMs to serve as predic-
tors in traditional graph mining tasks, a new paradigm termed
“LLMs as predictors” [25]. These studies predominantly con-
centrate on node classification tasks on text-attributed graphs
(TAGs), as the text attributes of each node serve as suitable

2684

2025 IEEE 41st International Conference on Data Engineering (ICDE)

2375-026X/25/$31.00 ©2025 IEEE
DOI 10.1109/ICDE65448.2025.00202

inputs for LLMs, and the task aligns well with the semantic
comprehension strengths of LLMs. As illustrated in Fig. 1,
each node to be classified has its neighbors selected to generate
contextual text. This text, combined with the query node’s
information and a task description, forms a prompt that the
LLM processes to classify the query node, thereby completing
a single query. This paradigm is analogous to GNNs as both
perform aggregation operations, with the aggregation targets
being the neighbors’ text and features, respectively. How-
ever, unlike GNNs, this paradigm handles each node’s query
independently and operates without the need for training,
thereby circumventing the previously mentioned challenges: it
can scale straightforwardly to large graphs, seamlessly handle
dynamic nodes, reduce reliance on labeled data, and maintain
versatility across multiple graphs.

While this paradigm holds great potential, deploying it
to classify large numbers of nodes in real-world scenarios
incurs substantial economic costs. For example, in work [25],
each query from the citation network consumes at least 1,200
tokens, including the titles and abstracts of both the query
article and five neighboring articles. Using even the cheapest
version of GPT-3.5, priced at $0.0005/1k input tokens, a single
query would cost at least $0.0006. Thus, handling a basic
industrial-scale task with 10 million queries would cost at
least $6,000, while using GPT-4 would increase the cost to
$360,000. How to achieve optimal overall task performance
for multiple queries under a limited token budget has become
a critical issue, awaiting suitable multi-query optimization
(MQO) solutions. However, most existing work in MQO [28]–
[30] is oriented towards SQL queries, and the few studies [31]–
[33] that do focus on LLM queries necessitate white-box
access to LLMs, making them incompatible with the black-box
LLMs commonly used in this paradigm. Additionally, these
MQO studies rarely incorporate considerations for graph data
scenarios. In response, this paper seeks to utilize the distinctive
properties of graph data to develop MQO strategies tailored
to optimizing the execution of multiple LLM queries.

Our approach begins by conducting an in-depth analysis at
the single query level from an information theory perspective,
seeking insights for optimizing multi-query execution. Con-
sidering that neighbor text is both a key design component
of existing methods and the dominant token cost in each
query, we identify it as pivotal in optimizing both cost and
precision. By evaluating the information gain from neighbor
text, we categorize nodes as saturated and non-saturated based
on their potential to benefit from neighbor text: saturated
nodes are those whose text attributes alone are adequate for
LLMs to make accurate predictions, while non-saturated nodes
need additional information from neighbor text. This guides
MQO: reduce token costs by minimizing the neighbor text of
saturated nodes and improve task performance by enriching
the neighbor text of non-saturated nodes.

To meet token budget constraints, we propose a token
pruning strategy designed to reduce token usage for multi-
query execution within the “LLMs as predictors” paradigm.
Unlike existing methods that uniformly equip neighbor text

into prompts for all node queries, our token pruning strategy
omits neighbor text for saturated node queries. Given that
saturated nodes can be accurately predicted by LLMs with
their own text, this strategy can maintain accuracy without
sacrifice. To identify saturated nodes among multiple query
nodes, we introduce a text-inadequacy measure that assigns
smaller values to saturated nodes and larger values to non-
saturated nodes. By sorting the text-inadequacy values of mul-
tiple queries in ascending order, users can flexibly determine
the percentage of top-ranked queries to omit neighbor text,
adapting to their token budgets. In essence, this strategy can
provide a customizable token allocation solution that maxi-
mizes cost-efficiency tailored to each user’s specific budget.

To optimize overall task performance, we propose a query
boosting strategy designed to enrich neighbor text for multiple
queries. The labels of neighbors are well-suited for augmenting
neighbor text; these brief labels consume minimal tokens and
generally benefit predictions, an advantage supported by the
widely recognized homophily principle [34] that connected
nodes often share similar labels. The fundamental idea of our
query boosting strategy is to enrich a query’ neighbor text with
responses (pseudo-labels) from historical neighboring queries,
building on the interconnected nature of multiple queries.
In pursuit of optimal pseudo-label utilization, this strategy
employs a query scheduling algorithm that arranges queries
with fewer neighbor labels to be executed later, increasing their
opportunities to integrate pseudo-labels from earlier executed
queries. Overall, this strategy offers a cost-effective way to
enrich the neighbor text of multiple queries.

Our main contributions are as follows:
• We propose a token pruning strategy that omits neighbor

text for saturated nodes, aimed at reducing tokens without
sacrificing accuracy. Furthermore, we propose identifying
saturated nodes based on a text-inadequacy measure,
providing a token allocation solution that optimizes cost-
efficiency for users with varying token budgets.

• We propose a query boosting strategy aims to improve
task performance by enriching the neighbor text of
unexecuted queries with pseudo-labels from historical
neighboring queries, and a query scheduling algorithm
is used to maximize the utility of these pseudo-labels.

• Experimental results show that the token pruning strat-
egy offers substantial token-saving potential and reduces
token usage without harming accuracy, while the query
boosting strategy exhibits significant potential in enrich-
ing neighbor text and enhances accuracy at minimal cost.

II. RELATED WORK

In this section, we present an overview of related research
in the fields of GNNs, LLMs as predictors and MQO.

A. Graph Neural Networks

GNNs based on feature-aggregation mechanisms have dom-
inanted graph mining, with representative methods including
GCN [35] and GraphSAGE [36]. For node classification tasks

2685

on TAGs, as illustrated in Fig. 1, the conventional GNN-
based workflow comprises two steps: first, encoding node
text attributes into initial node representations, and second,
inputting these representations along with the graph structure
into GNNs, which then generate predictions. GNNs are usually
trained in a semi-supervised manner. For encoding text at-
tributes, early approaches employed shallow embedding tech-
niques such as Bag-of-Words (BoW) [37] and skip-gram [38];
the current trend favors pre-trained language models (PLMs)
that offer richer semantic representations [39]. Additionally,
recent research has explored using LLMs to assist GNNs.
These approaches leverage LLMs from multiple perspectives,
such as providing labeled data [40], enhancing node text
attributes [41], and refining graph structures [42], [43]. While
GNN-based methods have greatly advanced graph learning,
it is important to acknowledge that they encounter numerous
challenges in practical scenarios, as previously detailed.

B. LLMs as Predictors

Compared to GNN-based methods, directly querying LLMs
to serve as predictors for graph tasks provides significant
advantages in terms of scalability and generalization. Exist-
ing studies [25]–[27] have determined that common prompt
engineering techniques, such as few-shot learning and chain-
of-thought (CoT) prompting, do not markedly improve node
classification performance. In contrast, incorporating neighbor
text into prompts has been demonstrated to enhance accuracy
in most datasets. While this can be done directly, some
methods [44]–[46] instead attempt to align graph tokens with
language tokens via instruction tuning. However, the need
for dataset-specific tuning limits their generalization across
datasets [45]. Given the high price per input token in black-
box LLMs, only a subset of neighbors from the query node’s
neighborhood can be included in the prompt (see Fig. 1). The
primary difference between the methods in this paradigm lies
in neighbor selection. For example, some methods randomly
select neighbors within a k-hop range [25], while others
prioritize neighbors deemed more relevant by LLMs [26] or
select neighbors with more similar text attributes [27]. Despite
its straightforward nature and still being in the nascent stages
of research, this paradigm has already shown notable perfor-
mance. A recent study [27] indicates that its methods have
outperformed traditional GNNs in a comprehensive way, even
achieving state-of-the-art (SOTA) results in some datasets.
However, the extensive costs of executing multiple node
queries via LLMs create a major barrier to their deployment in
industrial-scale graphs. Therefore, developing targeted query
optimization strategies for this paradigm becomes essential.

C. Multi-Query Optimization (MQO)

MQO is a classical problem in database management sys-
tems, where the objective is to minimize the total cost of
executing multiple queries by generating a globally opti-
mized query plan [47]. Traditional strategies to MQO have
primarily centered on recognizing and reusing shared inter-
mediate results among queries [28]–[30], such as executing

TABLE I
COMMON METHODS AND THEIR NEIGHBOR TEXT. N k(vi) DENOTES

NEIGHBORS WITHIN K-HOPS OF vi , AND TEXT(·) DENOTES THEIR TEXT.

Method Neighbor Text Ni

vanilla zero-shot ∅
1-hop random Text(RandomSample(N 1(vi),M))
2-hop random Text(RandomSample(N 2(vi),M))

a common subexpression only once and reusing the result
across multiple queries to reduce redundant computations.
With the widespread deployment of LLMs across various
applications and considering their substantial inference costs,
there is a growing need for MQO strategies tailored for
LLM queries [48]. Furthermore, traditional MQO, with its
primary focus on SQL query optimization, typically aims
solely at reducing costs without emphasizing accuracy. For
LLM queries, it is more practical to set the optimization goal
to maximize accuracy within a fixed token budget, as LLM
predictions are optimizable and the budget is usually fixed.
Recent developments [31]–[33] in this field have leveraged
the strategy of reusing shared prefixes across multiple queries
to minimize the costs of LLM inference. Techniques such as
column reordering and row sorting have been enhanced within
SQL workloads to maximize prefix sharing efficiency [49].
However, these prefix sharing optimization methods typically
require that LLMs be white boxes, which is not feasible
in the “LLMs as predictors” paradigm where LLMs are
commonly treated as black boxes. Fortunately, the unique
structural properties of graph data provide novel opportunities
for optimization. This work leverages these properties to
develop two MQO strategies that optimize LLM execution of
multiple node queries, adaptable to both black-box and white-
box models. To the best of our knowledge, this is the first
MQO work for LLMs processing graph tasks.

III. PRELIMINARY

This section outlines the foundational concepts in this work.

A. LLMs as Predictors

A TAG can be defined as G = (V, E , T ,X), where V , E ,
T and X are node set, edge set, text set and input feature
set, respectively. Each node vi ∈ V has a corresponding text
attribute ti ∈ T and input feature xi ∈ X , where xi ∈ Rd is
encoded from ti through methods like BoW. An edge eij =
(vi, vj) ∈ E indicates a connection between nodes vi and vj .
Given some labeled nodes VL ⊆ V with their corresponding
labels YL = {yi | vi ∈ VL, yi ∈ {1, . . . ,K}}, where K is the
number of classes, the node classification task is to predict the
labels of a set of unlabeled nodes VQ ⊆ (V \ VL).

As shown in Fig. 1, for a single query node vi ∈ VQ, the
first step of the “LLMs as predictors” paradigm is neighbor
selection. Let M denote the maximum number of neighbors
that can be included in the prompt. Different methods select
up to M neighboring nodes according to their rules, with
the text attributes and labels (if available) of these selected

2686

neighbors constituting the neighbor text Ni. Table I shows the
Ni associated with commonly used methods.

A prompt composing ti, Ni, and the task description is
constructed to query the LLM for the query node’s category.
The process is formalized as follows:

ŷi = LLM(ti,Ni; prompt), (1)

where LLM(·; prompt) denotes the operation of querying the
LLM with the prompt. ŷi represents the pseudo-label predicted
by the LLM’s response.

B. Problem Formulation

Here, we formalize the problem of MQO. The optimization
process aims to construct an execution plan π for the query
set VQ that adheres to the overall token budget B while
maximizing the overall task performance. The problem can
be expressed as follows:

π∗ = argmax
π

∑
vi∈VQ

1(yi = ŷi),

s.t.,
∑

vi∈VQ

Tokens(π ◦ vi) ≤ B,
(2)

where 1(condition) denotes the indicator function that equals
1 if the condition is true and 0 otherwise. The function
Tokens(π ◦ vi) represents the number of tokens consumed by
query node vi under execution plan π.

IV. SINGLE QUERY LEVEL ANALYSIS

In this section, we conduct an analysis at the single query
level from an information-theoretic perspective, setting the
stage for devising optimization strategies for multiple queries.

A. Analyzing Single Query Through Information Theory

Mutual information, denoted as I(x; y), quantifies the
amount of information that the input variable x provides
about the label y. For a single query node vi, the mutual
information between its text attribute ti and its label yi is
denoted as I(ti; yi). With the consumption of additional tokens
to include neighbor text Ni, the corresponding mutual infor-
mation between the combined texts and the label is denoted
as I(ti,Ni; yi).

Definition 1 (Information Gain): For a node vi, the
additional information gained by including Ni is defined
as IGNi = I(ti,Ni; yi)− I(ti; yi). Given two sets of neighbor
text, Ni and Ñi, if IGNi > IGÑi , it indicates that compared
to Ñi, Ni allows a better prediction of yi.

For an in-depth analysis of IGNi , we begin by employing
Partial Information Decomposition (PID) [50] on I(ti,Ni; yi),
which specializes in analyzing the multivariate mutual infor-
mation that a set of source variables contains about a target
variable. As shown in Fig. 2, I(ti,Ni; yi) is decomposed into
the following four terms:

I(ti,Ni; yi) = R(ti,Ni; yi) + U(ti\Ni; yi)

+ U(Ni\ti; yi) + S(ti,Ni; yi).
(3)

Fig. 2. Partial Information Decomposition of I(ti,Ni; yi). See Eq. 3 and the
following content for detailed explanations.

Here, R(ti,Ni; yi) denotes redundant information about yi
present in both ti and Ni. U(ti\Ni; yi) represents the unique
information about yi found only in ti and not in Ni,
while U(Ni\ti; yi) represents the unique information about yi
found only in Ni and not in ti. S(ti,Ni; yi) indicates the
synergistic information about yi that emerges only from the
combination of (ti,Ni) and not from either alone.

Based on the definitions of PID in Eq. 3, I(ti; yi) can be
derived as [50]:

I(ti; yi) = R(ti,Ni; yi) + U(ti\Ni; yi). (4)

Thus, the following identity holds exactly:

IGNi = I(ti,Ni; yi)− I(ti; yi)

= U(Ni\ti; yi) + S(ti,Ni; yi).
(5)

This illustrates that, compared to using only the node’s own
text ti, the information gain IGNi of including neighbor text
is driven by the unique information in Ni and the synergistic
information between ti and Ni.

It is important to note that U(Ni\ti; yi) and S(ti,Ni; yi)
can only add information about yi if this information is not
included in ti. In other words, although more tokens are
consumed to incorporate neighbor text, neighbor text provide
unique or synergistic contributions only when ti itself lacks
that specific information about yi. Therefore, the upper bound
of IGNi is given by:

IGNi ≤ H(yi)− I(ti; yi) = H(yi|ti), (6)

where the entropy H(yi) quantifies the total uncertainty about
yi, and H(yi|ti) denotes the remaining uncertainty about yi
after incorporating the information from ti.

Definition 2 (Saturated and Non-Saturated Nodes): A node
vi is defined as saturated1 if H(yi|ti) = 0 indicating that ti
contains all the necessary information about yi. Conversely,
a node is considered non-saturated if H(yi|ti) > 0 meaning
that ti does not contain sufficient information about yi.

For a saturated node, LLMs can make accurate predic-
tions using just it’s text ti, so including neighbor text Ni

merely wastes tokens without providing any information gain.
Meanwhile, for a non-saturated node, allocating extra tokens
to include neighbor text that can supplement the missing
information is a worthwhile investment.

1The concept of saturated nodes is applicable to all LLMs, though the
specific nodes identified as saturated may differ as the performance of different
LLMs may vary.

2687

Principle 1 (Information Gain Principle): In handling a
single query node vi, to avoid unnecessary token consumption
and optimize prediction outcomes, the guiding principle for
including neighbor text is:

Ni
∗ =

{
∅, if vi is a saturated node,

argmaxNi
IGNi , if vi is a non-saturated node.

(7)

B. Optimization Insights

As neighbor text is both a core design component of existing
methods and the main token cost, it is key to optimizing both
cost and precision. The principle 1 on neighbor text offers
essential optimization guidance, which we outline here.

1) Omitting Neighbor Text for Saturated Nodes: Existing
methods add neighbor text into the prompt uniformly for all
queries, without distinguishing between saturated and non-
saturated nodes. However, as principle 1 indicates, for any
saturated node vi, adding neighbor text Ni merely wastes
tokens. Moreover, prior work found that k-hop random can
underperform vanilla zero-shot on datasets like Pubmed [25],
[27]. Given the high proportion of saturated nodes, as evi-
denced by the 90% accuracy of vanilla zero-shot on Pubmed,
we infer that incorporating neighbor text for saturated nodes
is not only redundant but may also introduce noise.

In previous studies, vanilla zero-shot (Ni = ∅) demon-
strated decent performance, even with the entry-level LLM,
LLaMA-2-7B, achieving about 50% accuracy across various
datasets [26]. This suggests that saturated nodes, which do not
need neighbor text, are widely present in the datasets, even
when using the “simplest” LLM. Existing methods expend
considerable tokens on these nodes unnecessarily.

When facing budget constraints, identifying saturated nodes
among multiple node queries and omitting their neighbor text
can effectively reduce token costs of existing methods without
degrading task performance, as described in Section V-A.

2) Increasing Neighbor Information Gain for Non-
Saturated Nodes: For each non-saturated node vi, the op-
timization objective should focus on enriching its neighbor
text to increase IGNi , and this should be achieved with
minimal token usage. A practical and cost-effective solution
is to enrich the neighbor text with neighbor labels; these brief
labels consume minimal tokens and generally benefit predic-
tions. This strategy is supported by the widely recognized
homophily principle [34], which suggests that neighboring
nodes are likely to share the same label yi. Consequently,
including neighbor labels is likely to increase U(Ni\ti; yi)
and S(ti,Ni; yi), thereby enhancing IGNi .

An exploratory experiment was conducted to assess the ef-
fectiveness and optimization potential of this solution, specif-
ically questioning whether neighbor labels benefit predictions
and if existing methods’ queries frequently lack neighbor
labels. Each query was executed by two kinds of methods:
k-hop random and vanilla zero-shot. k-hop random equips
query with neighbor text, while vanilla zero-shot does not.
Thus, they each correspond to one of the terms in IGNi =

0

0.05

0.1

0.15

1-hop
random

2-hop
random

1-hop
random

2-hop
random

Cora Citeseer

In
fo

rm
at

io
n

G
ai

n

Fig. 3. The bar charts depict the impact of neighbor labels in increasing
IGNi in the Cora and Citeseer datasets. Each pie chart shows the proportion
of queries with NL

i ̸= ∅ and NL
i = ∅.

I(ti,Ni; yi) − I(ti; yi). Accordingly, the accuracy gain of k-
hop random over vanilla zero-shot can be used as a proxy for
IGNi , which quantifies the information gain from including
neighbor text. Let NL

i = Ni ∩ VL denote the set of labeled
nodes within Ni. NL

i = ∅ indicates that the neighbor text
does not contain neighbor labels, and vice versa for NL

i ̸= ∅.
(1) As shown in the bar charts in Fig. 3, queries with NL

i ̸= ∅
consistently exhibit higher IGNi compared to queries with
NL

i = ∅, confirming the effectiveness of neighbor labels in
increasing IGNi . (2) As depicted in the pie charts in Fig. 3,
queries with NL

i = ∅ are numerous, demonstrating that
existing methods often lack neighbor labels in their queries.

This implies that enriching neighbor text with neighbor
labels could enhance task performance without incurring sub-
stantial token costs, as illustrated in Section V-B.

V. PROPOSED MQO STRATEGIES

This section presents two MQO strategies: token pruning
and query boosting, which are derived from the optimization
insights previously described.

A. Token Pruning Strategy

Since omitting neighbor text for saturated nodes can reduce
token consumption, it is essential to identify these nodes from
all query nodes. Identifying saturated nodes requires evaluating
whether an LLM can correctly classify a node based solely on
its text attribute, usually assessed via prediction uncertainty.
A direct solution is to query the LLM using just the text
attribute (LLM(ti; prompt)), and the log probability that the
LLM assigns to the category token can serve to quantify
uncertainty. However, this solution incurs extra query costs,
contradicting our goal of cost-saving.

1) Text Inadequacy Measure: Our method instead breaks
down the LLM’s uncertainty into two components: one stem-
ming from the ambiguity of the node’s text attributes across
categories, and the other from the LLM’s inherent bias in
categories. Compared to non-saturated nodes, saturated nodes
have text attributes with clearer category information, and their
categories align with those that the LLM excels at predicting.
We first calculate the two components separately and then
integrate them into an overall text inadequacy measure, D(ti),
utilized for identifying saturated nodes.

2688

Query Token Pruning for Multiple Queries

Text Inadequacy
Measure

Multiple Queries Reranked Queries Token Pruning

Query Node TextTask Description Neighbor Text

Token
Budget

Fig. 4. Schematic diagram of the token pruning strategy.

Using the entropy of classification probabilities is a common
method for assessing the ambiguity of input. However, obtain-
ing these probabilities from black-box LLMs is impractical
and costly. To simplify the approach, we use a MLP as
a surrogate classifier fθ1 , inputting node features xi which
are encoded from ti via text encoding methods. The class
probabilities output by fθ1 are then used to compute entropy.
The surrogate classifier fθ1 is trained on the labeled set VL,
by solving: θ1

∗ = argminθ1
∑

vi∈VL
ℓ(fθ1(xi), yi), where

ℓ(·) represents the cross-entropy loss function. Then, for each
query node vi, we can compute the entropy of its category
probability distribution pi, given by:

H(pi) = H(fθ∗
1
(xi)) = H(pi,1, . . . , pi,K). (8)

To assess bias in LLMs toward certain classes, we first
randomly select a small subset of nodes, Vc

L, from VL and use
their text attributes to generate LLM predictions, represented
by ŷi = LLM(ti; prompt). Based on these predictions on Vc

L,
we calculate the distribution of misclassification ratios for
each class, denoted as w = (w1, . . . , wK), where each wk

is computed as: wk =

∑
vi∈Vc

L
1(yi=k)·1(ŷi ̸=yi)∑

vi∈Vc
L

1(yi=k) . Then, for each

query node vi, we can compute the inadequacy arising from
LLMs’ category bias, given by:

bi = pi ×wT. (9)

Finally, we train a linear regression model, denoted as gθ2 ,
to merge the two inadequacy channels into a comprehensive
measure of inadequacy. This is accomplished by solving:
θ2

∗ = argminθ2
∑

vi∈Vc
L
(1(ŷi ̸= yi)− gθ2(H(pi) ∥ bi))2,

where ∥ denotes concatenation. Thus, the overall text inad-
equacy D(ti) of vi is given by:

D(ti) = gθ∗
2
(H(pi) ∥ bi). (10)

As a proxy for H(yi|ti), D(ti) helps identify saturated vs.
non-saturated nodes among multiple query nodes, with smaller
values for saturated and larger values for non-saturated.

2) Token Pruning: As depicted in Fig. 4, when faced with
a limited token budget, we first calculate the text inadequacy
D(ti) for each query node vi ∈ VQ according to Eq. 10
and order them in ascending order. The saturated nodes are
expected to be ranked at the front, allowing for the pruning of
their neighbor text to save tokens. Meanwhile, the remaining
nodes are considered non-saturated and are more likely to
benefit from the neighbor text.

Users can adjust the number of node queries pruning
neighbor text according to their token budgets; put simply,
the budget B determines the percentage (τ%) of top-ranked

Algorithm 1 Token Pruning Strategy
Input: Query set VQ; token budegt B; LLM; surrogate clas-
sifier fθ∗

1
; linear regression model gθ∗

2
.

Step 1: Calculate Text Inadequacy
1: for each query node vi ∈ VQ do
2: Compute H(pi) according to Eq. 8.
3: Compute bi according to Eq. 9.
4: Compute D(ti) according to Eq. 10.
5: end for

Step 2: Rank and Token Pruning
6: Rank nodes in VQ based on D(ti) in ascending order.
7: Determine the percentage (τ%) of queries to omit neighbor text

based on budget B.
8: for each query in the top τ% of queries do
9: ŷi = LLM(ti; prompt).

10: end for
11: for each query outside the top τ% of queries do
12: ŷi = LLM(ti,Ni; prompt).
13: end for
Output: Predicted labels ŶQ = {ŷi | vi ∈ VQ}.

Query Token Pruning for Multiple Queries

Candidate Query
Selection

Multiple Queries
Pseudo
Labels

LLM Execution Use to Enrich
Neighbor Queries

Query Node TextTask Description Neighbor Text

Fig. 5. Schematic diagram of the query boosting strategy.

queries to omit neighbor text. For scenarios with a limited
token budget, Algorithm 1 details the token pruning strategy.

B. Query Boosting Strategy

Acknowledging the potential to boost task performance by
incorporating neighbor labels into neighbor text, we propose
using pseudo-labels from earlier queries to enrich the neighbor
text of subsequent neighboring queries, leveraging the inter-
connected nature in multiple node queries. Once earlier queries
are executed, their nodes and generated pseudo-labels expand
the labeled set VL and the labels set YL. Subsequently, the
neighbor text of unexecuted queries is updated, incorporating
these pseudo-labels based on the latest VL and YL.

In pursuit of optimal pseudo-label utilization, our strategy
includes a query scheduling algorithm designed with dual
goals: preventing the spread of incorrect pseudo-labels and
increasing the number of enriched queries. It organizes queries
into sequential rounds, placing those with multiple reliable
neighbor labels in earlier rounds because these are likely to
receive accurate pseudo-labels. Conversely, queries with sparse
or conflicting neighbor labels are placed in later rounds, which
not only increases their chance of enrichment by pseudo-
labels from prior rounds but also minimize their pseudo-label
propagation, considering their greater risk of inaccuracies.

Specifically, in each round, we select queries from the unex-
ecuted pool to constitute the candidate query set C, considering
both the number of neighbor labels and any conflicts between
them. The candidate criterion is defined as follows:

C = {vi | |NL
i | ≥ γ1 and LCi ≤ γ2}, (11)

2689

Algorithm 2 Query Boosting Strategy
Input: Set VL with labels YL; query set VQ; γ1, γ2.

1: while VQ ̸= ∅ do
Step 1: Candidate Query Selection

2: Initialize candidate query set C ← ∅
3: repeat
4: for each vi ∈ VQ do

Enrich Neighbor Text with Pseudo-Labels
5: Refresh Ni with the latest VL and YL.
6: Count neighbor labels |NL

i |.
7: Count conflicting labels LCi.
8: if |NL

i |≥γ1 and LCi≤γ2 then
9: Add vi to candidate query set C.

10: end if
11: end for
12: if C = ∅ then
13: γ1 ← γ1 − 1 or γ2 ← γ2 + 1
14: else
15: Exit the repeat loop
16: end if
17: until C ≠ ∅

Step 2: Query LLM
18: for each vi ∈ C do
19: ŷi = LLM(ti,Ni; prompt)
20: end for

Step 3: Add Pseudo-Labels to Labeled Set
21: for each vi ∈ C do
22: Add vi to VL, add ŷi to YL

23: Remove vi from VQ
24: end for
25: end while
Output: Predicted labels ŶQ = {ŷi | vi ∈ VQ}.

where |NL
i | indicates the number of neighbor labels, LCi =

|{yj | vj ∈ NL
i }| counts the different types of conflicting

labels. The integer hyperparameters, γ1 and γ2, which denote
the thresholds for neighbor labels and conflicting labels respec-
tively. During later stages of this process, there may be rounds
where none of unexecuted queries meet the candidate criteria
(|NL

i | ≥ γ1 and LCi ≤ γ2), leading to an empty candidate
query set C = ∅. In such cases, we relax the values of γ1
and γ2 incrementally (e.g., γ1 ← γ1 − 1 or γ2 ← γ2 + 1).
This enables us to broaden the selection criteria while still
prioritizing those queries that are most likely to be correctly
predicted. The incremental nature of this relaxation ensures
that we continue to leverage the core benefit of our query
boosting strategy—using reliable pseudo-labels to refine the
prediction process in subsequent rounds.

A simplified schematic of this query boosting strategy is
depicted in Fig. 5. Algorithm 2 outlines the entire procedure.

C. A Running Example

In this section, we present a running example to illustrate
the two optimization strategies. As shown in Fig. 6, the
query set VQ consists of papers to be sent to the LLM
for category prediction. Each query contains the title and
abstract of the paper, along with the titles and abstracts of
its referenced neighbor papers and a problem description. The
average number of tokens consumed per query is denoted as

Title & Abstract

Title & Abstract

Title & Abstract

Neighbor1:Title & Abstract; Neighbor2:Title & Abstract… Category?

Category?
Category?

Neighbor1:Title & Abstract; Neighbor2:Title & Abstract…

Neighbor1:Title & Abstract; Neighbor2:Title & Abstract…

Title & Abstract

Title & Abstract

Title & Abstract

Category?

Category?

Neighbor1:Title & Abstract; Neighbor2:Title & Abstract…

Paper

PaperToken
Pruning

Category?

Query
Boosting

LLM

Title & Abstract Neighbor1:Title & Abstract, Class: Agent; Neighbor2…

…

Title & Abstract Neighbor1:Title & Abstract; Neighbor2:Title & Abstract… Category? Paper

Paper

…

Title & Abstract Neighbor1:Title & Abstract; Neighbor2:Title & Abstract… Category?
Title & Abstract Category? Round 1

Round 2

Category?
Title & Abstract Neighbor1:Title & Abstract, Class: Database; Neighbor2… Category?

Database
Agent

LLM
…

…

Query
Set

1. Rank Queries based on D(ti)

2. Prune Neighbor Text for Top 𝝉%

1. Select Query Subset for Current Round

2. Enrich Unexecuted Queries with Pseudo Labels

Fig. 6. A running example of our optimization strategies, which can be
applied in sequence or individually.

Tokens(v), with the average number of tokens consumed by
the neighbor text represented by Tokens(N)2.

1) Token Pruning: Assume the user’s limited token budget
B < Tokens(v) × |VQ|, meaning some queries must omit
their neighbor text to save tokens. The proportion of such
queries, τ%, is determined as follows: B = τ% × |VQ| ×(

Tokens(v)− Tokens(N)
)
+ (1 − τ%) × |VQ| × Tokens(v),

solving for τ% gives: τ% =
|VQ|×Tokens(v)−B

|VQ|×(Tokens(v)−Tokens(N))
.

For each query paper vi ∈ VQ, its text inadequacy score
D(ti) is calculated according to Eq. 10. The queries are then
ranked based on D(ti). For the top τ% of queries, as shown
in Fig. 6, the neighbor text is omitted.

2) Query Boosting: In each round, queries are selected
from the unexecuted query pool via Eq. 11 and sent to
the LLM for category prediction. The resulting pseudo-labels
(e.g., “Agent”, “Database”) then enrich the neighbor text of
subsequent neighboring queries, as shown in Round 2 of
Fig. 6, where the neighbor text includes the newly added
“class: Agent”. This continues until all queries are classified.

3) Plug-and-Play Integration: Both token pruning and
query boosting serve as plug-and-play components that can
be seamlessly integrated into existing “LLMs as predictors”
methods. Specifically, token pruning optimizes token usage by
omitting neighbor text from the prompts of saturated nodes,
while query boosting improves query informativeness by ap-
pending pseudo-labels to the prompt. Notably, both strategies
operate on query prompts rather than modifying the model it-
self, ensuring broad applicability across different frameworks.
Moreover, these two strategies can be deployed separately or
combined sequentially, offering flexible optimization options
tailored to different objectives.

VI. EXPERIMENTS

This section evaluates the two optimization strategies re-
garding their effectiveness, universality, and application po-
tential. We start with an overview of the experimental settings
before addressing the following specific research questions:
Q1: Is the token pruning strategy effective across different

2Both values can be estimated through statistical analysis or approximation.

2690

methods? Q2: Does the token pruning strategy adapt well
to different budgets? Q3: How many tokens can be reduced
by the token pruning strategy in ideal conditions? Q4: How
effective is the designed text-inadequacy measure in identify-
ing saturated nodes? Q5: Is the query scheduling algorithm
capable of enhancing the utilization of pseudo-labels? Q6: Is
the query boosting strategy effective across various methods?
Q7: How effective is the joint application of the two strategies?
Q8: Can the two strategies be applied broadly across various
frameworks? Q9: How effective are the two strategies in the
link prediction task?

A. Experimental Settings

1) Datasets: We conduct evaluations on the following
five commonly used TAG datasets: Cora [51], Citeseer [52],
Pubmed [53], Ogbn-Arxiv [54], and Ogbn-Products [54].
Table II presents the statistical information for each dataset.
Node classification categorizes papers and products, while
link prediction predicts citation and co-purchase relationships.
These fundamental graph tasks play a crucial role in various
applications, such as recommendations and reasoning. Our
dataset processing and partitioning adhere to those used in
prior research within the “LLMs as predictors” paradigm [25]–
[27]. For the Cora, Citeseer, and Pubmed datasets, we use
20 labeled nodes per category as VL and randomly select
1,000 unlabeled nodes to form the query set VQ, which is
used for querying the LLM regarding their categories. For
the Ogbn-Arxiv and Ogbn-Products datasets, we follow the
original dataset partitions but also randomly select 1,000 nodes
from the test set to form the query set VQ.

2) Benchmark Methods for Optimization: Our optimization
strategies are assessed using prevalent “LLMs as predictors”
methods. These benchmark methods primarily differ in neigh-
bor selection, while all other steps remain consistent. The
neighbor selection details for each method are as follows:

• Vanilla zero-shot: No neighbor text is incorporated.
• k-hop random, k=1,2: Neighbors are selected within the

k-hop range of the query node, with a preference for
labeled neighbors followed by a random selection from
unlabeled neighbors, up to a fixed number limit, M .

• SNS [27]: This method progressively explores from closer
to farther hops to find enough labeled neighbors or until
reaching five hops. It then uses SimCSE [55] to measure
and rank the similarity between the query node’s text
and the identified labeled neighbors. The top-ranking
neighbors are selected in order, up to a limit of M .

Table III exemplifies the prompt templates. To save tokens,
the default configuration for neighbor text includes only the
titles and labels (if available) of the selected neighbors.

3) Implementations: Here, we present the implementation
details of benchmark methods and our optimization strategies.

• Regarding benchmark methods, GPT-3.5-0125 (as the
default) and GPT-4.0-mini serve as LLMs for executing
queries. The maximum number of neighbors per prompt,
M , is set to 10 for the Ogbn-Products dataset and 4 for all

other datasets, although some nodes may include fewer
neighbors due to having a lower degree.

• Regarding optimization strategies, since our experimen-
tal design emphasizes validating the versatility of our
optimization strategies, we avoid hyperparameter tuning
as much as possible. In the query boosting strategy, we
set the neighbor labels threshold γ1 and the conflicting
labels threshold γ2 at 3 and 2, respectively, for all datasets
and benchmark methods. In the token pruning strategy,
for small-scale datasets (Cora, Citeseer, Pubmed), we
use a linear MLP as the surrogate classifier fθ1 , with
a consistent learning rate of 0.01 and no weight decay.
For large-scale datasets (Ogbn-Arxiv, Ogbn-Products),
where sufficient labeled data is available, we conduct a
simple hyperparameter search for fθ1 within the follow-
ing ranges: number of layers {2, 3}, hidden size {96,
128, 256}, learning rate {0.001, 0.01}, and weight decay
{0.0001, 0.001}. We employ 3-fold cross-validation to
obtain the average category probability distribution and
entropy. The subset Vc

L, employed to evaluate the cat-
egory bias of LLMs, is configured to be 10 times the
number of classes.

B. Effectiveness of the Token Pruning Strategy Across Differ-
ent Benchmark Methods (Q1)

In each dataset, we utilize three benchmark methods to
execute 1,000 node classification queries as a baseline compar-
ison. In parallel, we implement our token pruning strategy on
these methods. This process begins by sorting these queries
in ascending order by their text-inadequacy scores D(ti),
targeting saturated nodes that do not rely on neighbor text for
high ranking. Then, we omit neighbor text from the top 20%
of these sorted queries for each method. Finally, each method
executes the queries, with the top 20% lacking neighbor text
and the remainder keeping it.

Table IV presents the classification results, where “w/ token
prune” denotes the versions that apply the token pruning
strategy, reducing token costs by omitting neighbor text in 20%
of the queries. ∆% indicates the percentage change in accuracy
of the “w/ token prune” version relative to the original method.
Across various datasets and methods, the accuracy of the “w/
token prune” versions does not exhibit significant degradation
compared to their original counterparts, as evidenced by the
negligible ∆%. This suggests that the top 20% of queries
selected based on our designed text-inadequacy measure in-
deed do not need neighbor text. Furthermore, this confirms the
viability of our token pruning strategy as both plug-and-play
and universally applicable, effectively optimizing token usage
across various methods without diminishing task performance.

C. Effectiveness of the Token Pruning Strategy Under Differ-
ent Token Budgets (Q2)

For each dataset, we set a series of token budgets for 1,000
node classification queries, allowing neighbor text inclusion
in up to 0%, 20%, 40%, 60%, 80%, 100% of queries. This
necessitates selecting a corresponding proportion of queries

2691

TABLE II
STATISTICS OF DATASETS.

Dataset #Nodes #Edges #Features #Classes Node Type Text Type Edge Type Category Labels

Cora 2,708 5,429 1,433 7 Paper Title&Abstract Citation [Case-Based, Theory, ...]
Citeseer 3,186 4,277 500 6 Paper Title&Abstract Citation [Database, Agents, ...]
Pubmed 19,717 44,338 384 3 Paper Title&Abstract Citation [Type 1 diabetes, Type 2...]

Ogbn-Arxiv 169,343 1,166,243 128 40 Paper Title&Abstract Citation [cs.AI, cs.CL, ...]
Ogbn-Products 2,449,029 61,859,140 100 47 Product Description Co-purchase [Books, Beauty, ...]

Fig. 7. Classification accuracy comparison between our token pruning strategy and the random strategy on the 1-hop random method, across token budgets
that allow neighbor text inclusion for up to 100%, 80%, 60%, 40%, 20%, 0% of queries.

TABLE III
PROMPT TEMPLATES USED FOR QUERYING LLMS.

vanilla zero-shot

Target paper: Title: title \nAbstract: abstract \nTask: \nCategories:
\n[category 1,. . . ,category K]\nWhich category does the target
paper belong to?\nPlease output the most likely category as a Python
list: Category: [‘XX’].

1-hop random, 2-hop random, SNS

Target paper: Title: title \nAbstract: abstract \n\nTarget paper
has the following important neighbors with citation relationships (if SNS,
add “from most related to least related”):\nNeighbor Paper0: {{\nTitle:
paper 0 title \nCategory: paper 0 label \n}}\nNeighbor
Paper1: {{\nTitle: paper 1 title \n}}\n... (more k-hop neighbors)
\nTask: \nCategories: \n[category 1,. . . ,category K]\nWhich
category does the target paper belong to?\nPlease output the most likely
category as a Python list: Category: [‘XX’].

TABLE IV
CHANGES IN CLASSIFICATION ACCURACY(%) RESULTING FROM TOKEN

REDUCTION USING THE TOKEN PRUNING STRATEGY.

Cora Citeseer Pubmed Ogbn-
Arxiv

Ogbn-
Products

1-hop random 72.3 64.1 87.4 71.8 83.7
w/ token prune 72.5 63.9 88.9 72.4 83.4

∆% 0.28% -0.31% 1.72% 0.84% -0.36%

2-hop random 72.0 64.8 88.8 72.6 83.5
w/ token prune 71.9 64.5 89.1 72.9 83.0

∆% -0.14% -0.46% 0.34% 0.41% -0.60%

SNS 74.8 69.3 89.3 71.5 84.3
w/ token prune 74.4 68.5 88.8 71.8 84.0

∆% -0.53% -1.15% -0.56% 0.42% -0.36%

from which neighbor text must be omitted. The first strategy
randomly selects the requisite number of queries to omit
neighbor text to meet budget constraints. In contrast, our token
pruning strategy arranges the queries in ascending order by
text-inadequacy scores and selects the requisite portion from
the top to omit neighbor text.

Fig. 7 illustrates the classification accuracy of the two strate-

gies across different budget constraints. In scenarios requiring
the omission of neighbor text from queries, our token pruning
strategy (the red line) consistently results in higher accuracy
compared to the random strategy (the blue line). This indicates
that our strategy effectively optimizes token allocation when
faced with constrained budgets, significantly mitigating the
potential negative impacts on prediction outcomes due to
budget reductions.

Additionally, we noted that for the Pubmed and Ogbn-Arxiv
datasets, scenarios where all queries omitted neighbor text
(right endpoint) achieved higher accuracy compared to cases
where all queries included neighbor text (left endpoint). This
indicates that beyond consuming additional tokens, neighbor
text might also introduce noise that impairs the LLM’s task
performance. Nonetheless, our token pruning strategy still
offered a comparative advantage by assisting saturated nodes
in avoiding the noise from neighbor text. This benefit is also
evident in Table IV, showing that, in most cases on the Pubmed
and Ogbn-Arxiv datasets, the accuracy of the “w/ token prune”
versions is higher than that of their original counterparts.

D. Token Reduction Potential of Token Pruning (Q3)

We calculate the number of tokens that can theoretically
be saved, determined by the total number of queries (|V|),
the proportion of saturated nodes (τ%), and the average token
consumption of the neighbor text (Tokens(N)). To estimate
the proportion of saturated nodes, we use the vanilla zero-shot
method to execute 1,000 node classification queries in each
dataset, none of which include neighbor text. Its prediction
accuracy can serve as a proxy for the proportion of saturated
nodes (τ%), which are nodes whose text attributes alone are
adequate for LLMs to make correct predictions. We compute
Tokens(N) under four types of neighbor text configurations:
titles of 4 neighbors; titles of 10 neighbors; titles and abstracts
of 4 neighbors; titles and abstracts of 10 neighbors. The
product |V| × τ% × Tokens(N) gives the amount of tokens
that can theoretically be reduced.

2692

TABLE V
NUMBER OF TOKENS POTENTIALLY REDUCIBLE VIA TOKEN PRUNING IN VARIOUS NEIGHBOR TEXT CONFIGURATIONS.

Cora Citeseer Pubmed Ogbn-Arxiv Ogbn-Products

Total queries 2708 3186 19,717 169,343 2,449,029
Accuracy Proportion of saturated nodes 69.0% 60.1% 90.0% 73.1% 79.4%

4 Neighbors,
Title Only

Neighbor Text Tokens 67.718 122.667 95.472 66.431 61.745
Potentially Reducible Tokens 126,533 234,880 1,694,184 8,223,473 120,064,767

10 Neighbors,
Title Only

Neighbor Text Tokens 169.296 306.667 238.681 166.077 154.362
Potentially Reducible Tokens 316,333 587,201 4,235,460 20,558,683 300,161,919

4 Neighbors,
Title & Abstract

Neighbor Text Tokens 799.909 804.518 1291.507 924.565 553.777
Potentially Reducible Tokens 1,494,647 1,540,480 22,918,181 114,451,613 1,076,835,422

10 Neighbors,
Title & Abstract

Neighbor Text Tokens 1999.774 2011.295 3228.768 2311.412 1384.442
Potentially Reducible Tokens 3,736,617 3,851,200 57,295,452 286,129,034 2,692,088,554

TABLE VI
AVERAGE TEXT-INADEQUACY VALUES IN SATURATED AND

NON-SATURATED NODES.

Node Type Cora Citeseer Pubmed O.-Arv. O.-Prdt.

Saturated 0.421 0.350 0.265 0.298 0.144

Non-saturated 0.478 0.437 0.330 0.339 0.253

Statistical results are presented in Table V. Firstly, the
vanilla zero-shot method performs consistently well across
all datasets, achieving accuracy ranging from 60% to 90%.
This indicates that in all datasets, many nodes have text
attributes that provide enough information for the LLM to
make accurate predictions without needing additional neighbor
text, suggesting a high proportion of saturated nodes. Sec-
ondly, the calculated number of potentially reducible tokens is
substantial, particularly evident in large datasets like the Ogbn-
Products dataset, where the reducible token count even reaches
the order of 2 × 109. This highlights the significant applica-
tion potential of our token pruning strategy, which advocates
omitting neighbor text from saturated nodes. Furthermore, we
notice that as the number and content of included neighbors
increase, the growth in potentially reducible tokens becomes
even more pronounced. This suggests that the token pruning
strategy is well-suited for tasks demanding extensive node
contexts, such as those involving long-range dependencies.

E. Effectiveness of the Text-Inadequacy Measure (Q4)

For 1,000 queries in each dataset, we classify them as
saturated or non-saturated nodes depending on whether the
vanilla zero-shot method accurately predicts their categories.
We subsequently computed the average values of our text-
inadequacy measure, D(ti), for each group.

As shown in Table VI, the average text-inadequacy values
for saturated nodes are consistently lower than those for non-
saturated nodes across all datasets. This indicates that our
designed text-inadequacy D(ti) serves as a reliable proxy for
H(yi|ti), with lower values indicating a higher likelihood of
node saturation. Additionally, although Table IV and Fig. 7
demonstrate broad optimization advantages from the exist-

3418

8476 9191

20371

3396 4217 4568

10044

3025

7394
9170

16656

3017 3642
4594

8237

25853

64066
78036

187422

21237
31832 39100

93721

62360

205439 193792

474785

51611
101925 96680

236716

3650292

13443183

7053435

17500950

3089383

6852744

3525915

8751384

Cora Citeseer

Ogbn-ProductsOgbn-Arxiv

w/ query scheduling

Pubmed

w/o query scheduling

1-hop
M=4

1-hop
M=10

2-hops
M=4

2-hops
M=10

1-hop
M=4

1-hop
M=10

2-hops
M=4

2-hops
M=10

1-hop
M=4

1-hop
M=10

2-hops
M=4

2-hops
M=10

1-hop
M=4

1-hop
M=10

2-hops
M=4

2-hops
M=10

1-hop
M=4

1-hop
M=10

2-hops
M=4

2-hops
M=10

Fig. 8. Comparison of pseudo-label utilization frequencies with and without
the use of the query scheduling algorithm.

ing text-inadequacy measure, the disparity in average text-
inadequacy values across the two groups remains modest. We
attribute this to the challenging nature of the task and the
simple heuristic currently used for calculation. Enhancing this
measure in future research, possibly by leveraging classifica-
tion probabilities from LLMs or utilizing more annotated sat-
urated nodes, could be highly valuable, given the considerable
potential for token savings shown in Table V.

F. Effectiveness of the Query Scheduling Algorithm in Enhanc-
ing Pseudo-label Utilization (Q5)

For each dataset, we set four configurations of neighbor text,
varying the top distance (1-hop or 2-hop) and the maximum
number of neighbors (M = 4 or 10). Under each configuration,
we compare the pseudo-label utilization between the “w/ query
scheduling” and “w/o query scheduling” versions, counting
how many times pseudo-labels generated by earlier queries
are used to enrich the neighbor text of later queries. The
“w/o query scheduling” version randomly divided queries into
50 rounds for execution. For a fair comparison, we also
configured “w/ query scheduling” version into 50 rounds. The
two versions are largely consistent, except in the execution

2693

TABLE VII
COMPARISON OF CLASSIFICATION ACCURACY (%) BEFORE AND AFTER

OPTIMIZATION OF THE QUERY BOOSTING STRATEGY. ↑ DENOTES
IMPROVEMENT.

Cora Citeseer Pubmed Cora Citeseer Pubmed

GPT 4o-mini GPT 3.5

1-hop random 67.8 61.0 79.4 72.3 64.1 87.4
w/ query boost 68.0↑ 63.2↑ 79.2 72.8↑ 65.3↑ 87.9↑

2-hop random 68.9 64.2 80.0 72.0 64.8 88.8
w/ query boost 70.2↑ 68.8↑ 80.6↑ 74.2↑ 67.3↑ 89.4↑

SNS 72.1 68.9 80.8 74.8 69.3 89.3
w/ query boost 72.6↑ 70.6↑ 81.6↑ 76.3↑ 70.6↑ 90.3↑

order of queries: while the “w/o query scheduling” version
randomly orders queries, “w/ query scheduling” version ar-
ranges each round’s queries by the count of neighbor labels
included, prioritizing those with more neighbor labels among
all unexecuted queries3. Note that this experiment does not
concern classification accuracy; we merely simulate LLMs
to generate pseudo-labels for queries rather than incurring
substantial costs by actual implementation.

Fig. 8 illustrates pseudo-label utilization for both versions.
(1) Even without the query scheduling algorithm, the “w/o
query scheduling” version achieves notable pseudo-label uti-
lization across different configurations and datasets, confirm-
ing the general feasibility of using pseudo-labels to enrich
queries. (2) Configurations with more neighbors and a larger
hop range, such as 2-hops and M = 10, report higher pseudo-
label utilization, as these settings lead to more frequent query
associations, offering more enrichment opportunities. (3) In
the 1-hop, M = 4 configuration, the “w/ query scheduling”
version offers only a modest improvement over the “w/o query
scheduling” version, due to the inherently fewer associations
among queries in this particular setting, which limits the poten-
tial for optimization through query scheduling. (4) Across all
other configurations and datasets, the “w/ query scheduling”
version nearly doubles the pseudo-label utilization compared
to the “w/o query scheduling” version, demonstrating the
effectiveness of the query scheduling algorithm.

G. Effectiveness of the Query Boosting Strategy Across Dif-
ferent Benchmark Methods (Q6)

Query boosting relies on the connections among multiple
queries, making it unsuitable when such connections are
sparse. For example, in Ogbn-Products, with 1,000 randomly
selected queries from 2 million nodes, sparse interconnections
provide few opportunities to acquire pseudo-labels from neigh-
boring queries. Moreover, cost constraints prevent us from
executing large-scale queries adapted to big datasets to create
a suitable experimental setup for query boosting. Therefore,
classification tests for the query boosting strategy are limited
to smaller datasets: Cora, Citeseer, and Pubmed, using 1,000
queries each. To minimize costs, we set M = 4, which, as
previously discussed, limits the advantages of query boosting.

3While the full candidate criteria include a conflicting labels threshold, it
has been omitted here due to the use of simulated pseudo-labels.

TABLE VIII
COMPARISON OF CLASSIFICATION ACCURACY (%) AND TOKEN COST

BEFORE AND AFTER APPLYING THE JOINT STRATEGY.

Queries
Equip Ni

Cora Citeseer Pubmed

GPT 4o-mini

1-hop random 1000 67.8 61.0 79.4
w/ prune & boost 800 68.5↑ 61.9↑ 79.3

2-hop random 1000 68.9 64.2 80.0
w/ prune & boost 800 70.3↑ 67.9↑ 80.8↑

SNS 1000 72.1 68.9 80.8
w/ prune & boost 800 71.9 69.2↑ 80.9↑

GPT 3.5

1-hop random 1000 72.3 64.1 87.4
w/ prune & boost 800 71.6 65.6↑ 89.4↑

2-hop random 1000 72.0 64.8 88.8
w/ prune & boost 800 73.4↑ 66.5↑ 89.5↑

SNS 1000 74.8 69.3 89.3
w/ prune & boost 800 75.6↑ 69.8↑ 89.9↑

Table VII reports the classification results. The “w/ query
boost” versions employ the query boosting strategy, which
utilizes pseudo-labels from earlier queries to enrich later
queries through the query scheduling algorithm. Since pseudo-
labels are short category names like “Database”, adding them
to query prompts incurs negligible extra token costs. It can be
observed that the query boosting strategy delivers classification
gains for all methods, although the limited associations among
queries caused by the M = 4 configuration restrict its
advantages. This not only validates our earlier analysis that
neighbor labels benefit prediction but also highlights the query
boosting strategy’s contribution to optimizing classification
accuracy for various methods.

H. Effect of the Two Strategies Applied Jointly (Q7)

In previous experiments, we validated the effectiveness of
the token pruning strategy in reducing token usage and the
query boosting strategy in improving task performance. Here,
we explore the optimization effect of the two strategies applied
jointly. For 1,000 node classification queries in each dataset,
we first apply the token pruning strategy, sorting these queries
in ascending order based on their text-inadequacy scores. The
neighbor text of the top 20% of these sorted queries is omitted
to reduce token usage. We then apply the query boosting
strategy to execute these queries, which progressively enriches
the neighbor text of unexecuted queries by incorporating
pseudo-labels generated in earlier rounds.

Table VIII presents the results before and after optimization,
where “w/ prune & boost” indicating the joint version. For
token cost, we use “# Queries Equip Ni” as an indicator: a
higher number of queries equipping Ni results in higher token
cost. Compared to the original counterparts, the joint version
not only removes the token cost incurred by the neighbor text
of 20% queries, but also achieves higher accuracy in most
scenarios. This demonstrates that the joint application of our
two optimization strategies can simultaneously minimize token
costs and enhance task performance, offering a comprehensive
improvement for benchmark methods.

2694

TABLE IX
COMPARISON OF CLASSIFICATION ACCURACY (%) ON THE CORA

DATASET AFTER APPLYING OUR OPTIMIZATION STRATEGIES TO
INSTRUCTION TUNING-BASED METHODS.

Backbone Base w/ boost w/ random w/ prune w/ both

1-hop, w/ raw, no path 84.2 85.8 78.6 83.1 84.2
2-hop, w/ raw, no path 84.4 86.2 78.4 83.9 85.2
2-hop, w/ raw, w/ path 84.6 85.8 78.9 83.9 84.3

1-hop, no raw, no path 73.3 74.7 71.1 74.9 75.5
2-hop, no raw, no path 83.3 84.2 78.2 82.4 83.5
2-hop, no raw, w/ path 82.8 85.5 77.4 81.9 84.5

TABLE X
COMPARISON OF LINK PREDICTION ACCURACY (%) BEFORE AND AFTER

OPTIMIZATION. ↑ DENOTES IMPROVEMENT.

Dataset Vanilla Base w/ boost w/ prune w/ both

Cora 73.0 76.1 80.2↑ 75.8 79.0↑
Citeseer 86.8 88.4 89.6↑ 88.5 89.8↑
Pubmed 87.5 86.9 88.3↑ 87.3 88.1↑

I. Effectiveness of the Two Strategies on Instruction Tuning-
Based Methods (Q8)

Beyond black-box LLM experiments, this section exam-
ines our strategies for instruction tuning-based “LLMs as
predictors” methods. These methods typically align graph
tokens with language tokens through training. Some variants
substitute raw text of neighbors with their corresponding graph
tokens. However, this does not affect our token pruning, as the
type of token—whether graph or language—does not alter the
pruning process. We experimented with six backbones from
instructGLM [44], covering various configurations such as
the inclusion of raw neighbor text (w/ raw vs. no raw), the
number of hops considered (1-hop vs. 2-hop), and whether
neighbor path descriptions are used (w/ path vs. no path).
We evaluated five configurations for each backbone: 1) the
unchanged model (Base), 2) with query boosting (w/ boost), 3)
with random pruning (w/ random), 4) with our token pruning
(w/ prune), and 5) with both token pruning and query boosting
(w/ both). In the last three variations, 30% of the queries had
their neighbors pruned to reduce token costs.

As shown in Table IX, our strategies consistently deliver
expected results across different backbones. The higher accu-
racy of “w/ prune” compared to “w/ random” demonstrates
the trade-off advantage of our token pruning, achieving token
reduction with much less accuracy loss. Furthermore, the ac-
curacy gains of “w/ boost” over “Base” and “w/ both” over “w/
prune” confirm the effectiveness of our query boosting. This
experiment validates that our strategies are equally applicable
and effective for instruction tuning-based methods.

J. Effectiveness of Our Strategies in Link Prediction Task (Q9)

This section investigates the effectiveness of our strategies
for link prediction, which predicts the existence of an edge
between a node pair. Since category information is not in-
volved in link prediction, the token pruning strategy computes
a node pair’s text inadequacy directly from the surrogate binary

classifier fθ∗ ’s output confidence (i.e., the maximum proba-
bility value), such that D(ti, tj) = 1 − max(fθ∗(xi||xj)). In
query boosting, selecting the candidate set C no longer needs
to consider conflicting labels, so C = {vi | |Ni| ≥ γ1}. The
operational flow is largely consistent with node classification.
For each dataset, we evaluated: 1) Vanilla: Node pair text
alone; 2) Base: Node pair text with neighbor links; 3) w/ boost:
Enriches prompts with new neighbors via query boosting; 4)
w/ prune: Prunes 20% of test edges’ neighbor links; 5) w/
both: Prunes 20% of edges and boosts with new neighbors.

In Table X, we show that our optimization strategies remain
effective in the link prediction task. The “w/ prune” version
maintains accuracy similar to the “Base” version, indicating
that its approach for measuring text adequacy is also suitable
for node pairs. Meanwhile, the accuracy improvement in the
“w/ boost” version indicates that the inclusion of pseudo-
labels from neighboring queries is also effective for link
prediction, further confirming the generality of our query
boosting strategy. This experiment highlights the versatility
of our strategies across node-level tasks.

VII. CONCLUSION

Building on an information-theoretic analysis at the single
query level, this paper proposes two strategies to optimize the
execution of multiple node queries with LLMs: token prun-
ing and query boosting. The token pruning strategy reduces
token usage of existing methods without compromising task
performance, while the query boosting strategy enhances task
performance with negligible additional token cost. Compre-
hensive experiments validate the effectiveness, universality,
and application potential of both strategies. Their advantages
are particularly pronounced in large-scale query scenarios,
excelling in token savings and effectively utilizing neighbor
pseudo-labels. These strategies significantly improve the cost-
efficiency and practicality of deploying LLMs on graph-related
tasks, especially in resource-intensive settings.

These optimization strategies are applicable across various
“LLMs as predictors” frameworks, whether black-box LLMs
or instruction tuning-based approaches. They are also scalable
to different node-level tasks; however, they are not yet directly
applicable to graph-level tasks, such as graph classification.
Future work could explore extending these strategies to graph-
level tasks, such as refining token pruning to exclude irrelevant
subgraph tokens in these contexts.

ACKNOWLEDGMENT

This work was partially supported by the National Natural
Science Foundation of China (NSFC) under Grants 92270125
and 62276024, the National Research Foundation, Singapore,
under its National Large Language Models Funding Initiative
(AISG Award No. AISG-NMLP-2024-004), and the China
Scholarship Council No. 202306030110. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore.

2695

REFERENCES

[1] A. Li, B. Yang, H. Huo, F. K. Hussain, and G. Xu, “Structure- and logic-
aware heterogeneous graph learning for recommendation,” in 2024 IEEE
40th International Conference on Data Engineering (ICDE), 2024, pp.
544–556.

[2] C. Wu, C. Wang, J. Xu, Z. Fang, T. Gu, C. Wang, Y. Song, K. Zheng,
X. Wang, and G. Zhou, “Instant representation learning for recommen-
dation over large dynamic graphs,” in 2023 IEEE 39th International
Conference on Data Engineering (ICDE). Los Alamitos, CA, USA:
IEEE Computer Society, April 2023, pp. 82–95.

[3] S. Gurukar, N. Pancha, A. Zhai, E. Kim, S. Hu, S. Parthasarathy,
C. Rosenberg, and J. Leskovec, “Multibisage: A web-scale recommen-
dation system using multiple bipartite graphs at pinterest,” Proc. VLDB
Endow., vol. 16, no. 4, p. 781–789, Dec. 2022.

[4] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing
graph neural network-based fraud detectors against camouflaged fraud-
sters,” in Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, ser. CIKM ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 315–324.

[5] D. Cheng, X. Wang, Y. Zhang, and L. Zhang, “Graph neural network
for fraud detection via spatial-temporal attention,” IEEE Transactions
on Knowledge and Data Engineering, vol. 34, no. 08, pp. 3800–3813,
August 2022.

[6] J. Jiang, Y. Li, B. He, B. Hooi, J. Chen, and J. K. Z. Kang, “Spade: A
real-time fraud detection framework on evolving graphs,” Proc. VLDB
Endow., vol. 16, no. 3, p. 461–469, Nov. 2022.

[7] K. M. Saifuddin, B. Bumgardnerr, F. Tanvir, and E. Akbas, “Hygnn:
Drug-drug interaction prediction via hypergraph neural network,” 2023
IEEE 39th International Conference on Data Engineering (ICDE), pp.
1503–1516, 2022.

[8] J. M. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ron-
neberger, K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko,
A. Bridgland, C. Meyer, S. A. A. Kohl, A. Ballard, A. Cowie,
B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen,
D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska,
T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior,
K. Kavukcuoglu, P. Kohli, and D. Hassabis, “Highly accurate protein
structure prediction with alphafold,” Nature, vol. 596, pp. 583 – 589,
2021.

[9] J. Liu, G. Tan, W. Lan, and J. Wang, “Identification of early mild
cognitive impairment using multi-modal data and graph convolutional
networks,” BMC Bioinformatics, vol. 21, 11 2020.

[10] J. Peng, Z. Chen, Y. Shao, Y. Shen, L. Chen, and J. Cao, “Sancus:
staleness-aware communication-avoiding full-graph decentralized train-
ing in large-scale graph neural networks,” Proc. VLDB Endow., vol. 15,
no. 9, p. 1937–1950, May 2022.

[11] X. Gao, T. Chen, Y. Zang, W. Zhang, Q. V. Hung Nguyen, K. Zheng,
and H. Yin, “ Graph Condensation for Inductive Node Representation
Learning ,” in 2024 IEEE 40th International Conference on Data
Engineering (ICDE). Los Alamitos, CA, USA: IEEE Computer Society,
May 2024, pp. 3056–3069.

[12] Y. Xu, B. Shi, T. Ma, B. Dong, H. Zhou, and Q. Zheng, “Cldg: Con-
trastive learning on dynamic graphs,” in 2023 IEEE 39th International
Conference on Data Engineering (ICDE), 2023, pp. 696–707.

[13] J. Zhao, H. Mostafa, M. Galkin, M. Bronstein, Z. Zhu, and J. Tang,
“Graphany: A foundation model for node classification on any graph,”
2024. [Online]. Available: https://arxiv.org/abs/2405.20445

[14] G. V. Demirci, A. Haldar, and H. Ferhatosmanoglu, “Scalable graph
convolutional network training on distributed-memory systems,” Proc.
VLDB Endow., vol. 16, no. 4, p. 711–724, Dec. 2022.

[15] X. Gao, W. Zhang, J. Yu, Y. Shao, Q. V. H. Nguyen, B. Cui, and
H. Yin, “Accelerating scalable graph neural network inference with
node-adaptive propagation,” in 2024 IEEE 40th International Conference
on Data Engineering (ICDE). IEEE, 2024, pp. 3042–3055.

[16] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017.

[17] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” in Interna-
tional Conference on Learning Representations, 2020.

[18] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep Graph Infomax,” in International Conference on Learning
Representations, 2019.

[19] R. Li, S. Di, L. Chen, and X. Zhou, “Gradgcl: Gradient graph con-
trastive learning,” in 2024 IEEE 40th International Conference on Data
Engineering (ICDE), 2024, pp. 1171–1184.

[20] G. Kusano, “Ga-tag: Data enrichment with an automatic tagging system
utilizing large language models,” in 2024 IEEE 40th International
Conference on Data Engineering (ICDE), 2024, pp. 5397–5400.

[21] Y. Lou, C. Lei, X. Qin, Z. Wang, C. Faloutsos, R. Anubhai, and
H. Rangwala, “Datalore: Can a large language model find all lost scrolls
in a data repository?” in 2024 IEEE 40th International Conference on
Data Engineering (ICDE), 2024, pp. 5170–5176.

[22] M. Pourreza and D. Rafiei, “Din-sql: decomposed in-context learning of
text-to-sql with self-correction,” in Proceedings of the 37th International
Conference on Neural Information Processing Systems, ser. NIPS ’23.
Red Hook, NY, USA: Curran Associates Inc., 2024.

[23] T. Ren, Y. Fan, Z. He, R. Huang, J. Dai, C. Huang, Y. Jing, K. Zhang,
Y. Yang, and X. S. Wang, “ PURPLE: Making a Large Language Model
a Better SQL Writer ,” in 2024 IEEE 40th International Conference on
Data Engineering (ICDE). Los Alamitos, CA, USA: IEEE Computer
Society, May 2024, pp. 15–28.

[24] J.-P. Zhu, P. Cai, B. Niu, Z. Ni, K. Xu, J. Huang, J. Wan, S. Ma, B. Wang,
D. Zhang, L. Tang, and Q. Liu, “Chat2query: A zero-shot automatic
exploratory data analysis system with large language models,” in 2024
IEEE 40th International Conference on Data Engineering (ICDE), 2024,
pp. 5429–5432.

[25] Z. Chen, H. Mao, H. Li, W. Jin, H. Wen, X. Wei, S. Wang, D. Yin,
W. Fan, H. Liu, and J. Tang, “Exploring the potential of large language
models (llms)in learning on graphs,” SIGKDD Explor., vol. 25, no. 2,
pp. 42–61, 2023.

[26] J. Huang, X. Zhang, Q. Mei, and J. Ma, “Can LLMs effectively leverage
graph structural information through prompts, and why?” Transactions
on Machine Learning Research, 2024.

[27] R. Li, J. Li, J. Han, and G. Wang, “Similarity-based neighbor selection
for graph llms,” arXiv preprint arXiv:2402.03720, 2024.

[28] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan, “Pipelining
in multi-query optimization,” in Proceedings of the Twentieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, ser. PODS ’01. New York, NY, USA: Association for Computing
Machinery, 2001, p. 59–70.

[29] S. Finkelstein, “Common expression analysis in database applications,”
in Proceedings of the 1982 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’82. New York, NY, USA:
Association for Computing Machinery, 1982, p. 235–245.

[30] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Efficient and exten-
sible algorithms for multi query optimization,” SIGMOD Rec., vol. 29,
no. 2, p. 249–260, May 2000.

[31] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the 29th
Symposium on Operating Systems Principles, ser. SOSP ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 611–626.

[32] J. Juravsky, B. Brown, R. Ehrlich, D. Y. Fu, C. Ré, and A. Mirhoseini,
“Hydragen: High-throughput llm inference with shared prefixes,” 2024.

[33] Z. Ye, R. Lai, B.-R. Lu, C.-Y. Lin, S. Zheng, L. Chen, T. Chen, and
L. Ceze, “Cascade inference: Memory bandwidth efficient shared prefix
batch decoding,” February 2024.

[34] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual Review of Sociology, vol. 27,
no. Volume 27, 2001, pp. 415–444, 2001.

[35] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017.

[36] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, ser. NIPS’17.
Red Hook, NY, USA: Curran Associates Inc., 2017, p. 1025–1035.

[37] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–
162, 1954.

[38] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013.

[39] H. Yan, C. Li, R. Long, C. Yan, J. Zhao, W. Zhuang, J. Yin, P. Zhang,
W. Han, H. Sun, W. Deng, Q. Zhang, L. Sun, X. Xie, and S. Wang,

2696

“A comprehensive study on text-attributed graphs: Benchmarking and
rethinking,” in Thirty-seventh Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track, 2023.

[40] Z. Chen, H. Mao, H. Wen, H. Han, W. Jin, H. Zhang, H. Liu, and
J. Tang, “Label-free node classification on graphs with large language
models (LLMs),” in The Twelfth International Conference on Learning
Representations, 2024.

[41] X. He, X. Bresson, T. Laurent, A. Perold, Y. LeCun, and B. Hooi,
“Harnessing explanations: LLM-to-LM interpreter for enhanced text-
attributed graph representation learning,” in The Twelfth International
Conference on Learning Representations, 2024.

[42] S. Sun, Y. Ren, C. Ma, and X. Zhang, “Large language models as
topological structure enhancers for text-attributed graphs,” arXiv preprint
arXiv:2311.14324, 2023.

[43] Z. Guo, L. Xia, Y. Yu, Y. Wang, Z. Yang, W. Wei, L. Pang, T. Chua,
and C. Huang, “Graphedit: Large language models for graph structure
learning,” CoRR, vol. abs/2402.15183, 2024.

[44] R. Ye, C. Zhang, R. Wang, S. Xu, and Y. Zhang, “Language is all a graph
needs,” in Findings of the Association for Computational Linguistics:
EACL 2024. St. Julian’s, Malta: Association for Computational
Linguistics, Mar. 2024, pp. 1955–1973.

[45] J. Tang, Y. Yang, W. Wei, L. Shi, L. Su, S. Cheng, D. Yin, and C. Huang,
“Graphgpt: Graph instruction tuning for large language models,” in
Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, ser. SIGIR ’24,
2024, p. 491–500.

[46] Z. Liu, X. He, Y. Tian, and N. V. Chawla, “Can we soft prompt
llms for graph learning tasks?” in Companion Proceedings of the ACM
Web Conference 2024, ser. WWW ’24. Association for Computing
Machinery, 2024, p. 481–484.

[47] T. K. Sellis, “Multiple-query optimization,” ACM Trans. Database Syst.,
vol. 13, no. 1, p. 23–52, Mar. 1988.

[48] M. Zhang, Z. Ji, Z. Luo, Y. Wu, and C. Chai, “ Applications and Chal-
lenges for Large Language Models: From Data Management Perspective
,” in 2024 IEEE 40th International Conference on Data Engineering
(ICDE). Los Alamitos, CA, USA: IEEE Computer Society, May 2024,
pp. 5530–5541.

[49] S. Liu, A. Biswal, A. Cheng, X. Mo, S. Cao, J. E. Gonzalez, I. Stoica,
and M. Zaharia, “Optimizing llm queries in relational workloads,” 2024.

[50] N. Bertschinger, J. Rauh, E. Olbrich, J. Jost, and N. Ay, “Quantifying
unique information,” Entropy, vol. 16, no. 4, pp. 2161–2183, 2014.

[51] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating
the construction of internet portals with machine learning,” Information
Retrieval, vol. 3, pp. 127–163, 2000.

[52] C. L. Giles, K. D. Bollacker, and S. Lawrence, “Citeseer: An automatic
citation indexing system,” in Proceedings of the third ACM conference
on Digital libraries, 1998, pp. 89–98.

[53] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, pp. 93–93, 2008.

[54] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” Advances in neural information processing systems, vol. 33,
pp. 22 118–22 133, 2020.

[55] T. Gao, X. Yao, and D. Chen, “SimCSE: Simple contrastive learning
of sentence embeddings,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, M.-F. Moens,
X. Huang, L. Specia, and S. W.-t. Yih, Eds. Online and Punta Cana,
Dominican Republic: Association for Computational Linguistics, Nov.
2021, pp. 6894–6910.

2697

