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Abstract
Existing embedded feature selection methods barely let non-class data contribute to 
feature selection. However, in some learning tasks, when non-class data have contribution 
to classification, they should also have an influence to the selection of useful features. 
For instance, F

∞
-norm support vector machine is an effective embedded group feature 

selection method that performs classification simultaneously. In this paper, we find out 
that it implicitly uses a kind of non-class data formulated as coordinate Universum when 
implementing group feature selection, and the information contained in this non-class 
data could be a meaningful group-wise F

∞
-norm penalization. As far as we know, this 

is the first time that F
∞

-norm penalization is understood from this angle. We prove that 
useful features can be identified through this non-class data that contribute to classifier 
construction. In addition, to fully explore the classification information provided by this 
non-class data, we improve F

∞
-norm support vector machine by deeming the non-class 

data as a middle class to better classify positive and negative classes. Experiments show 
that the non-class data in the proposed method help reduce the labelled data in some sense. 
Furthermore, it improves F

∞
-norm support vector machine in terms of both classification 

and group feature selection.

Keywords Group feature selection · Non-class data · Universum · Support vector machine · 
F
∞

-norm

1 Introduction

Extremely high dimensionality data have produced serious challenging to learning 
methods (Tang et al., 2014; Li et al., 2020), such as the curse of dimensionality (Hastie 
et al., 2009). Feature selection is an important and effective technique to cope with this 
problem, which selects a subset of relevant features from the original feature set without 
any transformation, meanwhile maintains physical meanings of the original features. 
In many real-world applications, features may not come individually but form group 
structures (Zhai et al., 2016). For example, a typical cause of cancer is the mutation on 
a gene pathway or a group of structured genes (Yuan et  al., 2011; Diez et  al., 2021); 
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different frequency bands can be represented by groups in signal processing (Zhang 
et  al., 2018). Therefore, when performing feature selection, one tends to select or not 
select features belonging to the same group simultaneously. For classification, features 
are selected with discriminative ability that can discriminate samples from different 
classes well.

In estimating support vector machine (SVM) (Cortes & Vapnik, 1995), one of the most 
widely applied classifiers, for simultaneously group feature selection, the feature selection 
phase can be independent of or closely involved with SVMs. According to this criterion, 
group feature selection SVMs can be categorized into three ways: filter, wrapper and 
embedded methods (Guyon & Elisseeff, 2003). Filter SVMs (Bradley & Mangasarian, 
1998; Pisner & Schnyer, 2020) first select features independently and then perform 
SVMs as a second stage. Wrapper SVMs (Guyon et  al., 2002; Guo et  al., 2021) use a 
predetermined SVM to evaluate the quality of selected group features. However, they have 
to run the predefined SVM many times to achieve features quality assessment, which is 
very computationally expensive. Due to the shortcomings of the above two types of group 
feature selection SVMs, embedded SVMs (Lal et al., 2006; Jiménez-Cordero et al., 2021) 
were studied to bridge the gap. They incorporate the statistical criteria as in filter SVMs 
to select subsets of features of a given cardinality with the highest classification accuracy. 
Embedded SVMs achieve model fitting and feature selection simultaneously, while 
including the interaction with the SVM classifiers and having less computational cost than 
wrapper methods. This kind of SVMs learns classifiers and features simultaneously in one 
union model, where the subspace learning and model learning complement each other, such 
as latent subspace learning for image classification (Fang et al., 2018), subspace support 
vector data description (Sohrab et al., 2018) and discriminative sparse subspace learning 
(Feng et  al., 2024). For embedded group feature SVMs, adding an extra group-wise 
penalization is considered as the most common and effective technique. Representative 
group-wise penalization SVMs are group lasso penalized SVM (GLasso-SVM) (Yang & 
Zou, 2015), combined L2-L1-norm based doubly regularized SVM (DrSVM) (Neumann 
et al., 2005; Wang et al., 2006) and F

∞
-norm SVM ( F

∞
-SVM) (Zou & Yuan, 2008), where 

F
∞

-SVM penalizes the empirical hinge loss as well as the sum of the factor-wise L
∞

-norm 
penalty. The group feature penalization drives coefficients in one group to zero together, 
and therefore realizes group feature selection.

Most of the existing embedded feature selection techniques in supervised 
classification only depend on the data of current task. However, data that are not directly 
belong to the current task may also have an influence to a classifier’s performance. 
For instance, additional comments regarding the characteristics of samples in a class 
(Vapnik & Vashist, 2009; Vapnik et al., 2015; Yuan et al., 2020), data in a different but 
relevant domain (Ding et  al., 2022; Khan & Swaroop, 2021), images of digit 6 when 
distinguishing images of digits 5 and 8 (Weston et  al., 2006; Richhariya & Tanveer, 
2020), they all affect the target classification task. However, these data are rarely directly 
used for feature selection, while they should affect selecting features since useful 
features benefit classification. For example, some detection problems such as acoustic 
event detection (Butko & Nadeu, 2011) use non-class data to find useful features in 
a filter style by computing the log-likelihood ratios of the class and the non-class. 
In embedded SVMs for classification, if some non-class data can affect the decision 
boundary, they should be considered when selecting features. The question is, which 
kind of non-class data should be considered and which role they play in embedded 
classifiers for feature selection? Actually, we observe that if some particular sample 
corresponds to a feature, then it could reveal the essence of a feature being useful by 
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observing whether its corresponding sample contributes to classification. These samples 
may not belong to any of the known classes, but still contribute to identifying useful 
features.

In fact, a kind of non-class samples formulated as Universum that was first brought up 
by Vapnik (Vapnik, 2006) and further introduced into SVM (Weston et  al., 2006) may 
connect samples with features under some circumstances. For binary classification, 
Universum is a dataset defined as a collection of unlabeled samples known not to belong to 
either class. Denote Universum as {x∗

1
,… , x∗

mu
} , where x∗

j
 is the j-th Universum sample, 

j = 1,… ,mu . The goal of the Universum SVM (U-SVM) (Weston et al., 2006) is to find a 
separating hyperplane as SVM. Different from SVM, this hyperplane is obtained not only 
from the given training labelled data but also with the help of the given Universum. 
Suppose the optimal separating hyperplane that U-SVM looks for is wT

x − b = 0 . Then 
U-SVM penalizes Universum by minimizing L�(w

T
x
∗
− b) to achieve maximal 

contradiction on Universum principle, where L�(⋅) is the �-insensitive loss and x∗ is the 
Universum sample. Suppose the Universm only contains samples that one of their features 
is taken value 1 and other features are value 0, which are called as coordinate Universum 
(c-Universum) in this paper. Then when the classifier is linear without threshold and � = 0 , 
this penalization becomes the L1-norm ‖w‖1 of the weight vector w , which will produce 
sparse features. However, though Weston et  al. (Weston et  al., 2006) pointed out such 
connection ostensibly, the role and effectiveness of the non-class c-Universum in 
classification or feature selection are not clear, and subsequent studies are also rare.

To explore the importance of non-class data to feature selection, and motivated by 
the work in (Weston et al., 2006), in this paper, we implement the idea of group feature 
selection using non-class data by exploring Universum and F

∞
-norm penalization. We 

first reveal that for F
∞

-SVM, its sum of the factor-wise L
∞

-norm penalty that used for 
group feature selection implicitly employs some non-class data, while it does not benefit 
group feature selection or classification. Then we endeavor to construct a novel F

∞
-norm 

Universum support vector machine ( F
∞

-USVM) by formulating this special type of 
non-class data as Universum to identify useful features, and in turn give an explanation 
for features that are selected. At the same time, F

∞
-USVM improves the performance of 

F
∞

-SVM on classification by exploring the discriminative information provided by this 
non-class data. In specific, the contributions of the paper are as follows: 

 (i) It is the first time to perform F
∞

-norm group feature selection by minimizing the loss 
on a non-class data. Therefore, it allows us to put this data in use for classification, 
and further identifies useful features from it.

 (ii) Compared to F
∞

-SVM, the proposed F
∞

-USVM gives an explanation that why 
a feature should be selected from the non-class data angle, and hence connects 
classification with feature selection. F

∞
-USVM identifies a feature as useful if the 

corresponding c-Universum sample contributes to the construction of the separating 
hyperplane. It reveals that the non-class c-Universum helps for better quality of the 
selected features.

 (iii) Further, F
∞

-USVM improves the classification performance of F
∞

-SVM by putting 
this non-class data in use for classification, incorporating the idea of ordinal 
regression. The considered non-class data c-Universum in the proposed F

∞
-USVM 

is deemed as a middle class that is exploited to classify positive and negative classes 
in F

∞
-USVM. This demonstrates that this non-class data in F

∞
-SVM helps reduce 

the labelled data.
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 (iv) Experiments on two simulated datasets and three real-world datasets show that 
compared to F

∞
-SVM and other state-of-the-art SVM feature selection methods, F

∞

-USVM can select better useful features while maintain classification performance. 
In particular, by performing the experiment on an emotional recognition problem 
where the data is very sparse, the results show that the proposed idea identifies 
meaningful features and achieves better classification accuracy.

The rest of the paper is organized as follows. Section 2 briefly reviews F
∞

-norm support 
vector machine. Section  3 proposes F

∞
-norm Universum support vector machine for 

group feature selection. Section 4 makes comparisons of the proposed method with its 
related methods on simulated data and real-world data. At last, concluding remarks are 
given in Sect. 5.

2  F
∞

‑norm support vector machine

This paper considers a binary classification problem in the n-dimensional real vector 
space ℝn . All vectors are column ones shown in bold. Given a training dataset 
T = {(x1, y1),… , (xm, ym)} , where xi ∈ ℝ

n is the input and yi ∈ {−1, 1} is the 
corresponding output, i = 1,… ,m . Without loss of generality, we suppose the first m1 data 
sample are from Class −1 , and the following m2 data sample are from Class +1 , where 
m1 + m2 = m . The goal of support vector machine is to find a mapping  
so that for each x ∈ ℝ

n , one can deduce its output by sign(wT
x − b) , where w ∈ ℝ

n , b ∈ ℝ , 
and sign(⋅) is the sign function. ‖ ⋅ ‖1 denotes the vector L1-norm, which is defined as the 
absolute value sum of components of a vector. ‖ ⋅ ‖

∞
 denotes the vector L

∞
-norm, which is 

defined as the maximum of the absolute values of components of a vector.
Suppose the features are generated by G factors namely F1,… ,FG , and Sg is the 

index set of features generated by Fg , g = 1,… ,G . Then 
G⋃
g=1

Sg = {1,… , n} . Further, 

suppose Sg ∩ Sg� = � for g ≠ g′ . For this group partition, w can also be composed as 
w = (w

S1

;… ;w
SG

) , where w
Sg
 is the subvector of w that corresponding to index set Sg.

F
∞

-SVM (Zou & Yuan, 2008) is a natural extension of L1-norm support vector machine 
( L1-SVM) (Zhu et al., 2003) that accounts for feature grouping information. It penalizes the 
empirical SVM loss as well as the sum of the group-wise L

∞
-norm. Due to the nature of 

the L
∞

-norm, F
∞

-SVM is able to eliminate a given set of features simultaneously. F
∞

-norm 
SVM solves the following problem

where C > 0 is the trade-off parameter, (t)
+
= max{0, t} . For optimal w and b, the class 

label of a new coming sample x is assigned as f (x) = sign(wT
x − b).

By writing w = w
+
− w

− and b = b+ − b− , where w+ ≥ 0 and w− ≥ 0 are the positive 
and negative parts of w satisfying w+

◦w
−
= 0 , ◦ is the Hadamard product, and b+ ≥ 0 and 

b− ≥ 0 are the positive and negative parts of b satisfying b+b− = 0 . F
∞

-SVM is equivalent 
to the following alternative formulation

(1)min
w,b

m�

i=1

[1 − yi(w
T
xi − b)]

+
+ C

G�

g=1

‖w
Sg
‖
∞
,
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where � = (�1,… , �n)
T and � = (�1,… , �G)

T are the vectors of slack variables, and 0 is all 
zero vector.

By observing the formulation of (2), F
∞

-SVM can be efficiently solved through a 
standard linear programming problem. Experiments in (Zou and Yuan, 2008) demonstrate 
that F

∞
-SVM has the ability to select features in groups. In fact, from (2), one sees that 

when �g = 0 for some g, then |wj| = w
+

j
+ w

−

j
= 0 , j ∈ Sg . In this case, the features in the 

g-the group are deemed as useless for F
∞

-SVM. However, it will be pointed out in the 
next section that F

∞
-SVM implicitly uses Universum but neglects its role in construction 

separating hyperplane and feature selection.

3  F
∞

‑norm Umiversum SVM for group feature selection

3.1  Group feature Universum generation

To utilize the Universum in group feature selection, we take a glance at F
∞

-norm 

penalization 
G∑
g=1

‖w
Sg
‖
∞

 . Suppose the features are pre-grouped as in the beginning of the 

above section. As can be seen from the definition, F
∞

-norm penalization is composed by 
the sum of L

∞
-norm terms. The common way to explain the L

∞
-norm is the direct 

observation in w space, as shown in the left panel of Fig. 1. By projecting w into the i-th 

(2)

min
w
+,w−,b+,b−,�,�

m∑

i=1

�i + C

G∑

g=1

�g

s.t. yi[(w
+

− w
−

)
T
xi − (b+ − b−)] ≥ 1 − �i,

w
+

j
+ w

−

j
≤ �g, j ∈ Sg, g = 1,… ,G,

w
+ ≥ 0, w− ≥ 0,

b+ ≥ 0, b− ≥ 0,

�i ≥ 0, i = 1, 2,… ,m,

�g ≥ 0, g = 1, 2,… ,G,

Fig. 1  Illustrations of two explanations of L
∞

-norm of w = (w1,w2)
T
= (0.6,−1.3)T . Left Panel: By 

projecting w into the two axes, the L
∞

-norm of w is computed as ‖w‖
∞
= max{�w1�, �w2�} = �w2� = 1.3 . 

Right Panel: Given Universum T
u
= {x

∗

1
, x∗

2
,−x∗

1
,−x∗

2
} , where x∗

1
= (1, 0)T , x∗

2
= (0, 1)T . Then the L

∞
-

norm of w is computed as the maximum of the inner product between w and each Universum sample in T
u
 , 

i.e., ‖w‖
∞
= max{wT

x
∗

1
,wT

x
∗

2
,wT

(−x
∗

1
),wT

(−x
∗

2
)} = w

T
(−x

∗

2
) = 1.3
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axis in the w space, one obtains the algebraic length of w , say wi . Then the L
∞

-norm of w is 
computed as ‖w‖

∞
= max{�w1�,… , �wn�} . In the case of Fig.  1, 

‖w‖
∞
= max{�w1�, �w2�} = �w2� . The second angle to explain L

∞
-norm is in a Universum 

sample space.

Definition 1 Define coordinate Universum (c-Universum) as the dataset Tu = {x
∗

1
,… , x∗

n
, 

−x
∗

1
,… ,−x∗

n
} , where the j-th feature of x∗

j
 is 1 and other features of x∗

j
 are 0, j = 1,… , n . 

A sample in c-Universum is called a c-Universum sample.

Property 1 The F
∞

-norm penalization 
G∑
g=1

‖w
Sg
‖
∞

 in F
∞

-SVM can be realized from the 

view of inner product between w and c-Universum samples. Further, it can be written as 
some loss on c-Universum samples.

Proof Without loss of generality, we consider the L
∞

-norm of w , since the F
∞

-norm 
penalization is the sum of L

∞
-norm terms. Then

Therefore, for a given w , its L
∞

-norm can be computed as the maximum inner product 
between w and c-Universum samples. Also, ‖w‖

∞
= max{�wT

x
∗

1
�,… , �wT

x
∗

n
�} . Therefore, 

by defining a loss on c-Universum as L =

G∑
g=1

max
j∈Sg

{�wT
x
∗

j
�} , it is exactly the group-wise 

penalization in F
∞

-SVM.   ◻

In the case of Fig. 1, it is obvious that

As pointed in (Weston et al., 2006), such non-class Universum information should be used 
to improve the classification performance. In addition, it is expected that this implicitly 
used Universum could identify which features being selected.

3.2  F
∞

‑norm Universum SVM formulation

From the above analysis, it is reasonable to introduce the c-Universum

into F
∞

-SVM for classification. In specific, we want to construct two parallel hyperplanes 
w
T
x − b1 = 0 and wT

x − b2 = 0 such that the first hyperplane separates the negative 
class and c-Universum, while the second hyperplane separates the positive class and 
c-Universum. To realize this idea, we propose the following F

∞
-norm Universum support 

vector machine ( F
∞

-USVM) for group feature selection

‖w‖
∞
= max{wT

x
∗

1
,… ,wT

x
∗

n
,wT

(−x
∗

1
),… ,wT

(−x
∗

n
)}.

‖w‖
∞
= max{wT

x
∗

1
,wT

x
∗

2
,wT

(−x
∗

1
),wT

(−x
∗

2
)} = w

T
(−x

∗

2
).

Tu = {x
∗

1
,… , x∗

n
,−x∗

1
,… ,−x∗

n
}

(3)min
w,b1,b2,�,�

1

m

m∑

i=1

�i +
Cu

4n

n∑

j=1

4∑

k=1

� k
j
+

Cr

G

G∑

g=1

max
j∈Sg

{|wT
x
∗

j
|}
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where Cu,Cr > 0 are trade-off parameters and 𝜃 > 0 is the margin, � = (�1,… , �m+2n)
T , 

� = (�1
1
,… , �4

n
)
T are the vectors of slack variables. After obtaining optimal w , b1 and b2 , for 

a new coming sample x , its class label is assigned as f (x) = sign(wT
x −

1

2
(b1 + b2)).

From (3)∼(12), we have the following two observations on classification and feature 
selection.

• For classification, by observing the first two objective terms and combing the 
constraints of model (3)∼(12), F

∞
-USVM treats c-Universum as a middle class, and 

forces it to lie between the positive and negative classes, which borrows the idea from 
support vector ordinal regression (Herbrich, 1999; Chu & Keerthi, 2007). In specific, 
the first, fourth and fifth constraints separate the negative class and c-Universum by 
the hyperplane wT

x − b1 = 0 , and the second, third and sixth constraints separate the 
positive class and c-Universum by the hyperplane wT

x − b2 = 0 . This makes implicit 
Universum Tu be exploited to provide discriminative information.

• For group feature selection, by minimizing the loss term on c-Universum, then 
max
j∈Sg

{|wT
x
∗

j
|} = 0 implies that the inner products of weight vector w and the 

c-Universum samples ±x∗
j
 for all j ∈ Sg are all 0. In this situation, the g-th group will 

not be selected. While the c-Universum samples ±x∗
j
 are parts of the training data in the 

construction of (3), we will see later that if the g-th group features have contribution to 
classification, then the corresponding g-th group features are also useful.

By introducing a nonnegative upper bound �g for each max
j∈Sg

{|wT
x
∗

j
|} , model (3)∼(12) can 

be equivalently written as a linear programming problem by adding constraints |wT
x
∗

j
| ≤ �g 

and �g ≥ 0, g = 1, 2,… ,G and minimizing the third term in (3) as 
G∑
g=1

�g instead. 

(4)s.t. wT
xi − b1 ≤ −� + �i, i = 1,… ,m1,

(5)w
T
xi − b2 ≥ � − �i, i = m1 + 1,… ,m,

(6)w
T
x
∗

j
− b2 ≤ −� + �1

j
, j = 1,… , n,

(7)w
T
x
∗

j
− b1 ≥ � − �2

j
, j = 1,… , n,

(8)− w
T
x
∗

j
− b1 ≥ � − �3

j
, j = 1,… , n,

(9)− w
T
x
∗

j
− b2 ≤ −� + �4

j
, j = 1,… , n,

(10)b1 ≤ b2,

(11)�i ≥ 0, i = 1, 2,… ,m,

(12)� k
j
≥ 0 j = 1,… , n, k = 1, 2, 3, 4,
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Therefore, the standard interior-point algorithm could be used to solve F
∞

-USVM directly. 
For the above proposed F

∞
-USVM, we further discuss the effect of c-Universum in feature 

selection. Given an optimal solution, for c-Universum samples that strictly lie between the 
positive class and negative class, they satisfy wT

x − b1 > 𝜃 and wT
x − b2 < −𝜃 . These 

samples have little influence on the classifier construction. Therefore, we only discuss the 
c-Universum samples satisfying wT

x − b1 ≤ � or wT
x − b2 ≥ −�.

Definition 2 If a c-Universum sample x∗ satisfies one of the inequalities wT
x − b1 ≤ � or 

w
T
x − b2 ≥ −� , we say x∗ is an influenced c-Universum sample for classification in F

∞

-USVM.

In the following, we show that c-Universum has relation to some useful features, where 
the j-th feature is said to be useful if wj ≠ 0.

Proposition 1 Given an optimal solution of F
∞

-USVM, suppose there exist some 
j1, j2 ∈ {1,… , n} such that �1

j1
+ �4

j1
= 0 and �2

j2
+ �3

j2
= 0 . Then if x∗

j
 is an influenced 

c-Universum, it identifies the corresponding j-th feature as a useful feature.

Proof By adding the constraints (7) and (8) together, b1 + � ≤ min
j=1,…,n

{�2
j
+ �3

j
} is obtained. 

Under the assumption, it has min
j=1,…,n

{�2
j
+ �3

j
} = 0 and hence b1 + � ≤ 0 . Similarly, by 

adding the constraints (6) and (9) together, it follows b2 − � ≥ − min
j=1,…,n

{�1
j
+ �4

j
} , and the 

assumption gives b2 − � ≥ 0 . Therefore, b1 + � ≤ 0 ≤ b2 − � . Without loss of generality, 
we assume b1 + 𝜃 < 0 < b2 − 𝜃 . If x∗

j
 is an influenced c-Universum for classification, then 

±w
T
x
∗

j
− b1 ≤ � or ±wT

x
∗

j
− b2 ≥ −� . If ±wT

x
∗

j
− b1 ≤ � , then ±wT

x
∗

j
≤ b1 + 𝜃 < 0 and 

w
T
x
∗

j
≠ 0 . This implies that the j-th feature is deemed useful. Similarity goes when 

±w
T
x
∗

j
− b2 ≥ −� . The proof is completed.   ◻

Figure 2 gives an illustration of F
∞

-SVM and F
∞

-USVM on a binary two-dimensional 
data, where each feature constitutes a feature group. One easily observes that Feature 1 is 
enough to separate the data well, and thus Feature 1 will be identified as useful if a sparse 
classifier is applied. It can be seen that with the help of c-Universum data, F

∞
-USVM 

Fig. 2  Influence of c-Universum to decision hyperplane on a two-dimensional data
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classifies the data well by just using Feature 1, while F
∞

-SVM has to use both of the two 
features to separate two classes.

In summary, putting the c-Universum samples representing features into the classifier 
will make F

∞
-USVM possess fair group feature selection ability as well as good classifica-

tion performance.

4  Experiments

In this section, F
∞

-USVM is experimentally compared with standard SVM (Cortes & 
Vapnik, 1995), L1-norm based feature selection L1-SVM (Zhu et  al., 2003), and repre-
sentative group feature selection SVMs, including DrSVM (Wang et al., 2006), GLasso-
SVM (Yang & Zou, 2015) and F

∞
-SVM (Zou & Yuan, 2008). Trade-off parameters for 

other methods are optimally selected from the set {2−8,… , 20,… , 28} by grid search 
and five-fold cross validation. Parameters for our F

∞
-USVM is optimally selected from 

{10−2, 10−1, 100, 101, 102, 103} . Experiments are performed on two simulated datasets with 
different numbers of samples and features, two medical datasets, and an emotional recogni-
tion dataset. All the methods are carried out on a PC with Intel i5 1.60 GHz CPU by Mat-
lab 2017b. All data are preprocessed by z-score normalization (Cheadle et al., 2003).

4.1  Simulated datasets

This part considers two simulated datasets similar to those in (Zou and Yuan, 2008), which 
focus on the situations that features are naturally grouped. The brief information of the 
simulated datasets is listed in Table 1, while their detailed construction is put in the Appen-
dix for readability. In the table, the i-th simulated dataset is denoted as Si, i = 1, 2 . S1 con-
siders the first order interaction among features, and features of S2 within a group have the 
same pairwise correlation.

4.1.1  Classification performance

For each of these two simulated datasets, we first consider the case that when fixing the 
number of data features to 40 (32), and 1000, 500, 300, 200, 100 and 50 samples are 
generated respectively. To investigate if the proposed method works on high-dimensional 
data, we also consider the case that when fixing the number of data samples to 100, then 

Table 1  Statistics information of simulated datasets

Data #features #groups #true groups True groups

S1 40 13 2 {F1,… ,F10}, {F11,… ,F20}

200 53 2 {F1,… ,F50}, {F51,… ,F100}

400 103 2 {F1,… ,F100}, {F101,… ,F200}

800 203 2 {F1,… ,F200}, {F201,… ,F400}

S2 32 10 3 {F1,F2}, {F3,F4}, {F9,F15,F21,F27}

200 55 3 {F1,F2}, {F3,F4}, {F21,F66,F111,F156}

450 120 3 {F1,F2}, {F3,F4}, {F31,F136,F241,F346}

800 210 3 {F1,F2}, {F3,F4}, {F41,F231,F421,F611}
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200, 400 (450) and 800 features are generated. The details about how to generate these 
high-dimensional features can also be found in the Appendix. For each case, random 20% 
samples of them are used for training, and the rest 80% samples are used for testing. The 
procedure is repeated 10 times, and the mean classification accuracy (Acc) and standard 
derivation (Std) averaged over these 10 runs for all the methods are recorded in Tables 2 
and 3.

From the results, we see that: (i) As the number of samples decreases, the performance 
of all the methods drops. Particularly, most of the methods perform much poorer when 
there are 20 or 10 samples. (ii) When the number of samples is relatively larger than the 
number of features, F

∞
-USVM is not very competitive, and is only slightly better than 

or comparable to the other methods; however, when the number of samples is small, F
∞

-USVM has an advantage; (iii) For high-dimensional case, F
∞

-USVM can still select the 
proper features or groups while maintain fair classification performance. It can be observed 
that the differences of accuracies between F

∞
-USVM and most of the other methods 

become larger in general. In particular, F
∞

-USVM improves F
∞

-SVM. It shows that the 
Universum provides useful discriminative information, and it works well when the number 
of labelled samples is small.

4.1.2  Feature selection performance

We then investigate the feature selection ability. The last four columns of Tables 2 and 3 
report the number of selected truly useful groups, the number of selected features, the 
number of selected truly useful features, and the number of selected noise features. In the 
tables, “#" means number, and the feature selection results are observed when a classifier is 
applied on all data samples. The closer of #selected true groups and #selected true features 
to the true group and true feature numbers the better, and the less #selected noise features 
the better.

From the results, one sees that: (i) SVM always can select almost all the feature groups, 
it is because it selects almost all the features. (ii) Though L1-SVM can select features, 
sometimes it can not identify features in groups. For examples, on data S1 with number 
of samples 20, it selects 21 features, which is more than ground true features. However, it 
does not identify any feature groups. (iii) For the group feature selection SVMs, F

∞
-USVM 

can select useful group features, and selects less noise features, which shows the feature 
selection role played by Universum. In addition, though some feature selection SVMs may 
select useful features and feature groups, they do not possess better classification perfor-
mance as F

∞
-USVM. This again shows the effect of Universum in classification for F

∞

-USVM.

4.2  Medical datasets

4.2.1  Cleveland dataset

Cleveland dataset1 is Dr. Detrano’s database modified to be a real dataset of 303 samples 
with 13 features, including 7 categorical features and 6 numeric features (Detrano et al., 
1989). The dataset comes from the Cleveland Clink in Cleveland, Ohio, for the diagnosis 

1 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Heart+ Disea se..

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
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Table 2  Comparison results on simulated dataset S1. Bold figure shows the best result on each dataset

#samples×
#features

Method Acc±Std #selected #selected #selected #selected
true groups features true features noise features

200×40 SVM 93.19 ± 0.45 2 40 20 20
L1-SVM 91.47 ± 0.33 1 30 19 11
DrSVM 93.89 ± 0.18 2 31 20 11
GLasso-SVM 91.52 ± 0.45 2 35 20 15
F
∞

-SVM 94.95 ± 0.20 2 30 20 10
F
∞

-USVM (ours) 95.30 ± 0.16 2 20 20 0
100×40 SVM 91.25 ± 0.89 2 40 20 20

L1-SVM 90.32 ± 0.77 1 29 19 10
DrSVM 92.21 ± 0.60 2 34 20 14
GLasso-SVM 92.31 ± 0.48 2 37 20 17
F
∞

-SVM 94.55 ± 0.40 2 30 20 10
F
∞

-USVM (ours) 95.33 ± 0.32 2 20 20 0
60×40 SVM 91.26 ± 0.76 2 40 20 20

L1-SVM 88.28 ± 0.97 1 35 18 17
DrSVM 91.19 ± 1.07 2 23 20 3
GLasso-SVM 92.95 ± 1.41 2 30 20 10
F
∞

-SVM 92.15 ± 0.70 2 30 20 10
F
∞

-USVM (ours) 93.13 ± 1.07 2 20 20 0
40×40 SVM 89.00 ± 0.79 2 40 20 20

L1-SVM 89.16 ± 1.22 0 25 15 10
DrSVM 89.29 ± 1.18 2 34 20 14
GLasso-SVM 88.81 ± 1.13 2 30 20 10
F
∞

-SVM 91.58 ± 1.20 2 30 20 10
F
∞

-USVM (ours) 92.54 ± 1.07 2 20 20 0
20×40 SVM 89.05 ± 1.74 2 40 20 20

L1-SVM 82.03 ± 1.93 0 21 10 11
DrSVM 87.23 ± 2.47 2 33 20 13
GLasso-SVM 88.13 ± 4.05 2 20 20 0
F
∞

-SVM 85.95 ± 2.89 2 33 20 13
F
∞

-USVM (ours) 92.55 ± 1.56 2 20 20 0
10×40 SVM 86.15 ± 2.56 2 40 20 20

L1-SVM 75.60 ± 3.01 0 18 10 8
DrSVM 85.10 ± 4.92 2 39 20 19
GLasso-SVM 82.90 ± 5.47 2 40 20 20
F
∞

-SVM 82.35 ± 4.40 2 30 20 10
F
∞

-USVM (ours) 90.70 ± 2.75 2 20 20 0
100×200 SVM 88.47 ± 2.00 2 200 100 100

L1-SVM 84.20 ± 3.15 0 35 15 20
DrSVM 91.23 ± 1.31 0 186 96 90
GLasso-SVM 92.28 ± 0.98 2 141 100 41
F
∞

-SVM 90.50 ± 1.10 2 150 100 50
F
∞

-USVM (ours) 94.58 ± 0.91 2 150 100 50
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of coronary artery disease of 303 patients under-going angiography. The class is either 
healthy (buff) or with heart-disease (sick). This dataset is interesting because it contains 
mixed features of both continuous and categorical. To verify the group feature section 
ability, we code these categorical features by dummy variables of 0 and 1. Therefore, some 
natural group features are generated. Each continuous feature is deemed as an individual 
group. By using this technique, we have 23 features that form 13 groups. The details of 
these features and groups are listed in the first two columns of Table 4. During experiments, 
five-fold cross validation is used for parameter searching, and then ten-fold cross validation 
averaged classification and feature selection results under optimal parameters are adopted.

To see which groups are selected, we compute the average frequency of features being 
selected in each group. If the average frequency of a group is 1, then this group is selected, 
otherwise, it is not selected. We list these frequencies for all methods in Table  4. The 
selected feature groups are marked by “check" in the bracket. We have the following obser-
vations. (i) The table shows that SVM selects all groups of features except the third group, 
while this group has very high frequency of 0.9900. This demonstrates that SVM does 
not have have the ability for feature selection. Apart from SVM, DrSVM, GLasso-SVM 
and our F

∞
-USVM can select feature groups on this data. (ii) We also list the classifica-

tion accuracy along with standard derivation of each method at the bottom of Table 4. The 
result shows that SVM has the highest classification accuracy, however, it uses all features. 
Apart from SVM, F

∞
-USVM outperforms other methods with relatively stable perfor-

mance. By combining the feature selection results, it demonstrates that F
∞

-USVM classi-
fies and selects useful group features simultaneously on this dataset.

To further compare the classification performance as well as the feature selection ability 
for each method, we depict their classification accuracies and the frequencies of selected 
features and feature groups under different values of sparseness regularization parameters, 
while other parameters are optimally set. As shown in Fig. 3, SVM always selects a very 
high percentage of features or feature groups, since it does not have feature selection 
ability. For L1-SVM and F

∞
-SVM, though they can select some features or feature groups 

under some parameters, they may not possess the best classification performance at the 

Table 2  (continued)

#samples×
#features

Method Acc±Std #selected #selected #selected #selected
true groups features true features noise features

100×400 SVM 92.88 ± 2.64 2 400 200 200

L1-SVM 81.83 ± 2.94 0 42 23 19

DrSVM 93.15 ± 1.56 0 294 163 131

GLasso-SVM 87.73 ± 1.87 2 300 200 100

F
∞

-SVM 93.35 ± 1.68 2 300 200 100

F
∞

-USVM (ours) 94.23 ± 1.26 2 300 200 100
100×800 SVM 91.30 ± 1.04 2 800 400 400

L1-SVM 81.38 ± 2.33 0 44 25 19
DrSVM 89.38 ± 1.78 0 456 280 176
GLasso-SVM 90.73 ± 4.24 2 598 400 198
F
∞

-SVM 92.45 ± 2.26 2 600 400 200
F
∞

-USVM (ours) 93.13 ± 2.16 2 598 400 198
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Table 3  Comparison results on simulated dataset S2. Bold figure shows the best result on each dataset

#samples×
#features

Method Acc±Std #selected #selected #selected #selected
true groups features true features noise features

200×32 SVM 100.00 ± 0.00 3 32 8 24
L1-SVM 100.00 ± 0.00 1 4 4 0
DrSVM 100.00 ± 0.00 1 4 4 0
GLasso-SVM 98.22 ± 1.70 1 4 4 0
F
∞

-SVM 100.00 ± 0.00 1 4 4 0
F
∞

-USVM 
(ours)

100.00 ± 0.00 1 4 4 0

100×32 SVM 100.00 ± 0.00 3 32 8 24
L1-SVM 99.85 ± 0.47 1 4 4 0
DrSVM 98.96 ± 0.68 1 4 4 0
GLasso-SVM 99.05 ± 1.85 1 4 4 0
F
∞

-SVM 99.76 ± 0.51 1 4 4 0
F
∞

-USVM 
(ours)

100.00 ± 0.00 1 4 4 0

60×32 SVM 99.14 ± 0.73 3 32 8 24
L1-SVM 99.71 ± 0.92 1 4 4 0
DrSVM 99.36 ± 0.48 1 4 4 0
GLasso-SVM 98.52 ± 1.94 1 4 4 0
F
∞

-SVM 99.78 ± 0.46 1 4 4 0
F
∞

-USVM 
(ours)

100.00 ± 0.00 1 4 4 0

40×32 SVM 98.05 ± 1.12 3 32 8 24
L1-SVM 98.03 ± 1.55 1 4 4 0
DrSVM 97.86 ± 2.24 1 4 4 0
GLasso-SVM 94.59 ± 2.60 1 4 4 0
F
∞

-SVM 98.96 ± 1.22 1 4 4 0
F
∞

-USVM 
(ours)

99.65 ± 0.46 1 4 4 0

20×32 SVM 91.03 ± 3.26 3 32 8 24
L1-SVM 88.03 ± 3.43 1 4 4 0
DrSVM 85.40 ± 4.95 3 29 8 21
GLasso-SVM 81.55 ± 5.88 1 4 4 0
F
∞

-SVM 95.83 ± 2.25 1 4 4 0
F
∞

-USVM 
(ours)

98.43 ± 0.99 1 4 4 0

10×32 SVM 81.55 ± 3.50 3 31 8 23
L1-SVM 77.85 ± 3.16 1 4 4 0
DrSVM 73.90 ± 3.76 3 25 8 17
GLasso-SVM 78.65 ± 4.99 3 32 8 24
F
∞

-SVM 81.35 ± 5.15 1 4 4 0
F
∞

-USVM 
(ours)

90.40 ± 6.15 1 4 4 0
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Table 3  (continued)

#samples×
#features

Method Acc±Std #selected #selected #selected #selected
true groups features true features noise features

100×200 SVM 71.25 ± 3.23 3 200 8 192

L1-SVM 77.43 ± 3.65 1 4 4 0

DrSVM 76.83 ± 3.95 3 8 8 0

GLasso-SVM 67.80 ± 2.64 3 196 8 188

F
∞

-SVM 93.65 ± 5.53 1 4 4 0

F
∞

-USVM 
(ours)

98.48 ± 1.66 1 4 4 0

100×450 SVM 67.63 ± 2.17 3 450 8 442
L1-SVM 71.60 ± 6.89 1 4 4 0
DrSVM 70.88 ± 4.94 0 3 3 0
GLasso-SVM 63.83 ± 1.89 1 76 4 72
F
∞

-SVM 95.20 ± 4.17 1 4 4 0
F
∞

-USVM 
(ours)

98.18 ± 1.80 1 4 4 0

100×800 SVM 64.30 ± 2.85 3 799 8 791
L1-SVM 68.43 ± 4.12 1 4 4 0
DrSVM 64.65 ± 2.41 3 350 8 342
GLasso-SVM 64.45 ± 5.90 3 800 8 792
F
∞

-SVM 86.03 ± 2.55 1 4 4 0
F
∞

-USVM 
(ours)

98.13 ± 2.43 1 4 4 0

Table 4  The frequency of features being selected in each group on the Cleveland dataset. Here “1(
√

 )" 
means that the frequency of features in the corresponding group being selected is 100% and the group is 
selected

Group SVM L1-SVM DrSVM GLasso-SVM F
∞

-SVM F
∞

-USVM (ours)

1 1 ( 
√

) 0.6000 0.9800 1 ( 
√

) 0.2600 0.4000
2 1 ( 

√

) 0.4000 1 ( 
√

) 0.9600 0.7400 0.9600
3 0.9900 0.6100 0.9450 1 ( 

√

) 0.9550 1 ( 
√

)
4 1 ( 

√

) 0.7600 1 ( 
√

) 0.9800 0.3600 0.5000
5 1 ( 

√

) 0.7400 1 ( 
√

) 0.9800 0.1400 0.3200
6 1 ( 

√

) 0.7800 0.9600 0.9600 0.2800 0.2800
7 1 ( 

√

) 0.3000 0.7800 1 ( 
√

) 0.5867 0.7733
8 1 ( 

√

) 0.7000 0.9600 0.9600 0.4400 0.7000
9 1 ( 

√

) 0.7800 1 ( 
√

) 1 ( 
√

) 0.6000 0.7400
10 1 ( 

√

) 0.7200 1 ( 
√

) 0.9800 0.3400 0.7400
11 1 ( 

√

) 0.4733 0.9600 1 ( 
√

) 0.8133 1 ( 
√

)
12 1 ( 

√

) 0.9400 1 ( 
√

) 1 ( 
√

) 0.8000 0.9800
13 1 ( 

√

) 0.5400 0.9133 1 ( 
√

) 0.9533 1 ( 
√

)
Acc±Std 82.63 ± 0.67 78.22 ± 1.30 81.40 ± 1.20 73.10 ± 2.53 78.40 ± 1.76 81.57 ± 0.65
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same time. For DrSVM, GLasso-SVM and F
∞

-USVM, they all perform well and can select 
some features and feature groups simultaneously under some parameters, while DrSVM 
and F

∞
-USVM outperform GLasso-SVM.

4.2.2  WOBC dataset

Breast cancer Wisconsin (original) dataset2 from the UCI repository contains 699 breast 
cancer patients, of which 458 are benign and 241 are malignant. Each instance is described 
by 9 attributes with integer value in the range 1-10. Similar to the Cleveland data, we 
represent features by dummy variables of 0 and 1. Therefore, there are  9 groups of features 
and each group contains 10 features, as displayed in Table 5.

Fig. 3  The classification accuracy, frequency of selected features, and frequency of selected feature groups 
for all the methods under different parameters on the Cleveland dataset

2 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Breast+ Cancer+ Wisco nsin+% 28Ori ginal% 29.

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
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From Table 5, we see that except SVM, F
∞

-USVM is the only method can select group 
features, namely the second, the third, and the fifth groups. In contrast, other methods 
can not find the same selected group among ten random splits. It also shows that the 
classification accuracies of other feature selection methods are not as satisfied as F

∞
-

USVM. In fact, F
∞

-USVM has comparable performance as SVM on this data.
As in the Cleveland dataset, we also present the classification accuracies and the 

frequencies of selected features and feature groups under different values of sparseness 
regularization parameters for each method, as in Fig. 4. We can see that SVM can not select 
features, while L1-SVM can not select the same features for different runs. For DrSVM 
and F

∞
-SVM, they have the ability to select features but fail to select a whole group. In 

contrast, GLasso-SVM and our F
∞

-USVM can select groups of features while F
∞

-USVM 
outperforms GLasso-SVM on classification.

4.3  Emotional recognition dataset

This subsection considers a text dataset regarding the emotions of netizens on COVID-
19 that is collected by Beijing government.3 The data contain the comments related 
to COVID-19 on weibo.com between 2020/01/01-2020/02/20, including release time, 
account, content, pictures and videos (optional). Emotional tendency of each data sample 
is annotated artificially, and we here consider the text content of emotion tendency −1,+1 , 
where −1,+1 represent the negative and positive emotions, respectively. 400 samples with 
label +1 and 400 samples with label +1 are used. The data are processed using term fre-
quency-inverse document frequency (TF-IDF) technique, and the key words of TF-IDF 
greater than 0.003 are kept, which leaves 1160 features. These features are grouped into 50 
clusters using k-means. Fifteen percent samples are randomly selected for training, while 
the rest samples are for testing.

The test classification accuracy, the number of selected features, the number of 
selected groups, the number of selected features belong to the selected groups, and the 

Table 5  The frequency of features being selected in each group on the WOBC dataset. Here “1 ( 
√

 )" means 
that the frequency of features in the corresponding group being selected is 100% and the group is selected

Group SVM L1-SVM DrSVM GLasso-SVM F
∞

-SVM F
∞

-USVM (ours)

1 1 ( 
√

) 0.3000 0.3680 0.0000 0.9520 0.8600
2 1 ( 

√

) 0.3280 0.5400 0.9800 0.9060 1 ( 
√

)
3 1 ( 

√

) 0.3320 0.5520 0.8800 0.9600 1 ( 
√

)
4 0.9980 0.2500 0.3620 0.3200 0.8780 0.6800
5 0.9980 0.2460 0.4400 0.5000 0.8020 1 ( 

√

)
6 1 ( 

√

) 0.4260 0.4120 1 ( 
√

) 0.8620 0.9400
7 1 ( 

√

) 0.2400 0.4980 0.0800 0.9080 0.9800
8 0.9980 0.3800 0.4680 0.6800 0.9140 0.9400
9 0.9000 0.1360 0.2140 0.0180 0.3400 0.2160
Acc±Std 96.03 ± 0.22 93.32 ± 0.76 95.55 ± 0.41 94.98 ± 0.38 93.35 ± 0.68 96.12 ± 0.21

3 https:// data. beiji ng. gov. cn/ kjzy2 020/ index. html.

https://data.beijing.gov.cn/kjzy2020/index.html
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sparsity that represents the ratio of selected features to all features are listed in Table 6. 
The results show that F

∞
-USVM outperforms other methods in terms of accuracy, 

especially is better than F
∞

-SVM.

Fig. 4  The classification accuracy, frequency of selected features, and frequency of selected feature groups 
for all the methods under different parameters on the WOBC dataset

Table 6  The classification accuracy and the number of selected features on the emotional recognition 
dataset

Characteristic SVM L1-SVM DrSVM GLasso-SVM F
∞

-SVM F
∞

-USVM (ours)

Acc 61.76 59.26 67.65 60.74 63.68 68.53
#selected features 1160 62 992 556 104 73
#selected groups 50 2 32 32 6 4
#selected features in groups 1160 2 79 171 16 59
Sparsity 0.00 94.66 14.48 52.07 91.03 93.71
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On the number of selected features and feature groups, SVM does not have the 
feature selection ability, while L1-SVM selects the the least number of features, and 
F
∞

-SVM and F
∞

-USVM can select features. In specific, L1-SVM and F
∞

-SVM and F
∞

-USVM have SFRatio greater than 90%. However, F
∞

-USVM has better classification 
accuracy than those of L1-SVM and F

∞
-SVM.

As for the selected feature groups, one sees that L1-SVM selects the least number 
of feature groups, while each of these two groups only contains one feature. This 
shows that though L1-SVM can select few features, it barely has group feature selection 
ability. In contrast, for the proposed F

∞
-USVM, it selects four feature groups that 

contain 59 features totally, which covers most of its selected features. By observing the 
SGNo, SGFeaNo and SFeaNo values, we see that the features selected by the proposed 
F
∞

-USVM mostly come from feature groups, while DrSVM, GLasso-SVM and F
∞

-
SVM select less features from the feature groups. To see if the features and feature 
groups selected by F

∞
-USVM are meaningful, we plot its selected (groups of) words 

in Fig.  5a–d. In Fig.  5e–h, we give the corresponding English translation. From the 
figure, one observes that each selected group has its own characteristic. The first group 
reflects the support to COVID-19 control work and blessing to relevant workers; the 
second group reflects the anxiety when facing the epidemic situation; the third group 
reflects the rational attention to the epidemic situation; the fourth group reflects the 
resort for help on unknown or uncertain information. In summary, the above results 
confirm the classification and feature selection ability of the proposed F

∞
-USVM.

Fig. 5  Feature groups selected by F
∞

-USVM on the emotional recognition dataset. The 1st row is the 
original Chinese words in different groups, and the 2nd row is the corresponding English translation

Table 7  Overall comparison among F
∞

-USVM and related baselines. The results are the summarized 
performance of each method on all the datasets, the details of which are described in Sect. 4.4

Method/Characteristic FS Group FS Universum Acc±Std FS-NFS ratio Goup FS ratio

SVM No No No 84.77 ± 1.12 – –
L1-SVM Yes No No 84.73 ± 1.40 0.0181 0.0057
DrSVM Yes Yes No 87.34 ± 1.08 0.2350 0.1574
Glasso-SVM Yes Yes No 83.71 ± 1.84 0.2802 0.3604
F
∞

-SVM Yes Yes No 85.42 ± 1.29 0.1483 0.2790
F
∞

-USVM (ours) Yes Yes Yes 88.60 ± 0.67 0.2651  0.5682
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4.4  Overall comparison

To give a clear and overall behavior comparison between F
∞

-USVM and its related 
methods, their characteristics and average experimental results are summarized in Table 7. 
In the table, FS represents feature selection. The first three columns demonstrate whether 
a method has the feature selection ability, the group feature selection ability, and whether 
uses Universum information. The last three columns demonstrate the average experimental 
results across all datasets. The fourth column shows the average and standard derivation 
of accuracies. The fifth column first computes the number of true useful features in the 
selected features and the number of useless features in the selected features, and then 
compute the ratio of their difference to the number of total features (FS-NFS ratio). The 
last column computes the ratio of the number of selected useful groups and the number of 
true groups (Goup FS ratio). For both FS-NFS ratio and Goup FS ratio, they are the higher 
the better.

From Table 7 and by combining the above observations, one sees that all methods have 
the feature selection ability except SVM. For methods with feature selection ability, the 
indicators of the last three columns are obviously the larger the better. It is clear that L1
-SVM has feature selection ability, but it can not effectively identify group features. 
DrSVM, GLasso-SVM, F

∞
-SVM and our F

∞
-USVM have group feature selection ability, 

but DrSVM, GLasso-SVM, and F
∞

-SVM do not employ the group feature selection and 
classification information provided by implicit Universum, which affects their performance 
on selecting useful features and classifying samples. In contrast, the proposed F

∞
-USVM 

fully employs this information and has the highest FS-NFS ratio and Goup FS ratio. 
Combing its recognition accuracy, one sees F

∞
-USVM outperforms other methods.

5  Conclusion

This paper implements the idea of group feature selection using non-class data by exploring 
a special Universum and F

∞
-norm penalization, and proposes a novel F

∞
-norm Universum 

support vector machine. This type Universum realizes group feature selection by imposing 
a new loss, and it also plays a discriminative role in classification. Empirical results show 
that F

∞
-norm Universum support vector machine outperforms related methods, especially 

F
∞

-norm support vector machine. It should be pointed out that F
∞

-norm support vector 
machine is proposed for predefined feature groups. When there is no information on 
groups, one can choose to cluster features first and then apply the proposed method, as 
pointed out in (Zou and Yuan, 2008). Of course, obtaining proper clustered features is also 
not an easy job and hence is worth investigating.

Appendix A The construction of the Simulated data

For simulated data, 5-fold cross validation is used for parameter searching. Different from 
the common 5-fold cross validation, we here use 20% of the data for training, and 80% of 
the data for testing. Under the optimal parameters, 10 times 5-fold cross validation results 
are recorded.
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Simulated data 1: Firstly, thee latent variables Z1 , Z2 and Z3 and 40 variables 
{�i|i = 1,… , 40} are randomly independently generated from a standard normal 
distribution. Then the features of this simulated data are defined by

For these fixed 40 features, 1000, 500, 300, 200, 100 and 50 samples are generated 
respectively, and for each data sample, its label is decided by which sides of the hyperplane 
4Z1 + 3Z2 + 1 = 0 it lies in. It can be seen that the first 20 features form two groups in 
which the pairwise correlation within each group is 0.8. Similarly, the second and third 10 
features form the second group and third group with the same correlation. Since the last 10 
features are independent noise features, each of them form an individual group of size one. 
Therefore, this data has 13 groups of 40 features totally. By observing the decision plane, 
it can be seen that the true groups are the first two groups {F1,… ,F10}, {F11,… ,F20} 
corresponding to the first 20 features.

To further investigate if the proposed method works on the high-dimensional data, 
we also generate 200, 400 and 800 variables {�i} as above, which correspond to 200, 
400 and 800 features.

Simulated data 2: This simulated data first constructs four latent variables Z1,… , Z4 
and then generates two types of discrete features F2i−1 and F2i for each Zi , i = 1,… , 4 . 
The first type feature F2i−1 satisfies that if Zi ≥ Φ

−1
(
2

3
) , then the feature value is 1, and 

0 otherwise. The second type feature F2i satisfies that if Zi ≤ Φ
−1
(
1

3
) , then the feature 

value is 1, and 0 otherwise. On top of the above 8 features, we further construct more 
features with interactions between them. In specific, features F9,… ,F14 take value 1 
if Zi ≥ Φ

−1
(
2

3
) and Zj ≥ Φ

−1
(
2

3
) for 1 ≤ i ≤ j ≤ 4 and 0 otherwise. For example, feature 

F9 takes value 1 if Z1 ≥ Φ
−1
(
2

3
) and Z2 ≥ Φ

−1
(
2

3
) and 0 otherwise. Similarly, features 

F15,… ,F20 take value 1 if Zi ≥ Φ
−1
(
2

3
) and Zj ≤ Φ

−1
(
1

3
) for 1 ≤ i ≤ j ≤ 4 and 0 otherwise, 

features F21,… ,F26 take value 1 if Zi ≤ Φ
−1
(
1

3
) and Zj ≥ Φ

−1
(
2

3
) for 1 ≤ i ≤ j ≤ 4 and 

0 otherwise, and features F27,… ,F32 take value 1 if Zi ≤ Φ
−1
(
1

3
) and Zj ≤ Φ

−1
(
1

3
) 

for 1 ≤ i ≤ j ≤ 4 and 0 otherwise. Therefore, these four latent variables generate 32 
features. As simulated data 1, for these fixed 32 features, 1000, 500, 300, 200, 100 and 
50 samples are generated as such, and for each of them, its label is decided by which 
sides of the hyperplane 3F1 + 2F2 + 3F3 + 2F4 + F9 + 1.5F15 + 2F21 + 2.5F27 − 4 = 0 
it lies in as above. Clearly, these 32 features form 10 groups, where for i = 1,… , 4 , 
the i-th group contains two features {F2i−1,F2i} , and for each j = 1,… , 6 , 
{F8+6(i−1)+j|i = 1,… , 4} forms a group. From the decision hyperplane, it can be seen that 
the true features are F1,F2,F3,F4,F9,F15,F21,F27 , which correspond to tree true groups 
{F1,F2}, {F3,F4}, {F9,F15,F21,F27} . Further, we generate 10, 15 and 20 latent variables 
as above, which correspond to 200, 450 and 800 features.
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