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Abstract

Anchor selection or learning has become a critical compo-
nent in large-scale multi-view clustering. Existing anchor-
based methods, which either select-then-fix or initialize-then-
optimize with orthogonality, yield promising performance.
However, these methods still suffer from instability and in-
sufficient depiction of data distribution. Moreover, the desired
properties of anchors in multi-view clustering remain unspec-
ified. To address these issues, this paper first formalizes the
desired characteristics of anchors, namely Diversity, Balance
and Compactness. We then devise and mathematically vali-
date anchors that satisfy these properties by maximizing the
Mahalanobis distance between anchors. Furthermore, we in-
troduce a novel approach called Max-Mahalanobis Anchors
Guidance for multi-vIew Clustering (MAGIC), which itera-
tively guides the cross-view representations to progressively
align with our well-defined anchors. This process yields
highly discriminative and compact representations, signifi-
cantly enhancing the performance of multi-view clustering.
Experimental results show that our meticulously designed an-
chor strategy significantly outperforms existing anchor-based
methods in enhancing anchor efficacy, leading to substantial
improvement in multi-view clustering performance.

1 Introduction
Data appears in various forms in the information era, each
offering a distinct perspective. However, a single view of
data often fails to capture the complexity and heterogeneity
of data. In bioinformatics, for example, the intricate behav-
iors of organisms are determined by gene expression data,
protein-protein interaction, and phenotypic characteristics.
Isolating any single view may lead to incomplete conclu-
sions (Rappoport and Shamir 2018). Multi-view clustering
(MVC) addresses this by processing multiple views simulta-
neously to reveal their interrelationships. Current multi-view
clustering methodologies focus on three core objectives: bet-
ter representation (Liu et al. 2013; Gao et al. 2015; Sun et al.
2021; Ma et al. 2024), better alignment (Wang et al. 2019;
Zhang et al. 2021; Wang et al. 2022) and better fusion (Kang
et al. 2020a; Li et al. 2020; Zhang et al. 2023), which are
also essential for handling missing views (Li et al. 2023b;
Jin et al. 2023; Wen et al. 2023; Yu et al. 2024).

Rapid technological advancement has led to an influx
of multi-view data, offering opportunities for more valu-
able insights but also presenting challenges in processing

the increase in data volume. Efficient clustering for large-
scale multi-view data has become a key research focus. Cur-
rent mainstream methods use anchor points to avoid asso-
ciating all samples. This paper categorizes these anchor-
based MVC methods into two groups: fixed-anchor-based
MVC (Li et al. 2015, 2020; Li and He 2020; Kang et al.
2020b; Xia et al. 2022) and optimized-anchor-based MVC
(Ou et al. 2024; Wang et al. 2021; Chen et al. 2022b; Li
et al. 2023b, 2024). Fixed-anchor-based MVC typically gen-
erates anchors through pre-processing techniques such as
k-means or sampling strategies before the algorithm. Sam-
pling methods, which select anchors randomly or heuristi-
cally, are simple and efficient but often lead to poor and un-
stable performance due to randomness and lack of structure
relevance (Xia et al. 2022; Li et al. 2020). Additionally, sam-
pling may introduce more challenges, such as potential dis-
crepancies in anchor correspondence across views. Alterna-
tively, using k-means cluster centers as the anchors generally
improves performance by leveraging clustering-relevant in-
formation in anchors (Kang et al. 2020b; Li and He 2020;
Yang et al. 2022). However, k-means is sensitive to ini-
tialization, requiring multiple runs to mitigate randomness,
and incorrect anchor initialization may cause disappointed
clustering results. Optimized-anchor-based MVC improves
upon the fixed-anchor strategy by incorporating anchors di-
rectly into the multi-view clustering optimization process.
These methods typically employ the self-expression con-
cept but use representative points to establish relationships
with all samples. To ensure anchor representativeness, they
generally impose orthogonal constraints to enforce diversity
among anchors (Wang et al. 2021; Liu et al. 2022).

Both fixed-anchor-based MVC and optimized-anchor-
based MVC have their strengths and limitations. Fixed-
anchor methods, derived from the original data space, aim
to select anchors that better fit the data but suffer from in-
stability in initialization and the complexity of designing ef-
fective heuristic strategies. On the other hand, optimized-
anchor methods learn anchors during the algorithm, mak-
ing the acquisition of anchors less manual and more diverse
through orthogonal constraints. However, this results in un-
necessary sacrifice in the anchors’ fitting performance to the
data due to overly restrictive orthogonality constraints, par-
ticularly when the number of anchors is large.

Given the above research findings, this paper proposes an



explicit definition of desirable anchors in multi-view clus-
tering. In multi-view clustering, we expect to obtain a set
of common anchors that possess three key properties: Di-
versity, Balance, and Compactness. Specifically, Diversity
implies that the obtained anchors should be as dissimilar as
possible, maximizing inter-cluster distances and facilitating
more distinguishable data representations. Balance refers to
the equilibrium between anchors across multi-view data, en-
suring robust and stable structure. Data usually lie on a low-
dimensional manifold within a high-dimensional space, ex-
hibiting a more compact rather than uniform distribution. As
a sketch of the data, the distribution of anchors should also
maintain Compactness while satisfying the above two crite-
ria, avoiding unnecessary increases in their dimensionality.
Revisiting previous anchor-based methods with our defined
anchor properties, we conclude that fixed-anchor methods
mainly focus on balance, selecting anchors to effectively
cover the data distribution. On the other hand, optimized-
anchor methods emphasize diversity, striving to learn signif-
icantly different anchors to separate the data. However, or-
thogonal constraints on anchors may be overly restrictive,
potentially limiting the model’s representational capacity.
Besides, this can impede data point discrimination in high-
dimensional spaces due to the curse of dimensionality.

Since the ultimate goal of algorithmic models is to contin-
uously fit data to anchors (either fixed or optimized), anchors
with superior characteristics can guide the representation to
be more discriminative, thereby achieving enhanced cluster-
ing performance. In light of the aforementioned analysis,
we aim to provide an explicit definition of anchor proper-
ties and propose a design strategy for obtaining optimal an-
chors that satisfy these definitions. Integrating these anchors
into our multi-view clustering framework can lead to supe-
rior data representations, thereby improving clustering per-
formance. Specifically, we propose an optimal anchor design
strategy called Max-Mahalanobis Anchors (MMA), which
is carefully designed by maximizing the minimum angle
between any two anchors, thereby achieving the promising
iter-cluster dispersion effect. This paper then leverages the
superior properties inherent in the MMA to achieve more
efficacious re-representations of multi-view data, resulting
in enhanced clustering performance. In summary, the main
contributions of this paper are as follows:

• This paper provides formal definitions and mathematical
formulation for the desirable properties (Diversity, Bal-
ance and Compactness) of anchors, revealing the defi-
ciency of current anchor-based MVC methods.

• This paper proposes a rational-design anchor strategy,
termed Max-Mahalanobis Anchors (MMA), satisfying
the expected properties of anchors with theoretical proof.
We integrate the novel MMA into our multi-view cluster-
ing framework, guiding the consensus representation to
gradually align with our well-designed structure.

• Extensive experiments demonstrate our method’s effec-
tiveness. Comparisons with anchor-based MVC highlight
our superior anchor performance and data fitting effects,
validating the outstanding properties of MMA.

2 Related Work
In this section, we review the rationale and literature of
anchor-based multi-view clustering methods. Then, the most
relevant algorithms are introduced in detail. The key nota-
tions used throughout this paper are listed in Tab. 1.

Notation Description

N , K, V Number of samples, clusters and views
di Feature dimension of i-th view

X(i) ∈ RN∗di Data matrix in the i-th view
X

(i)
[j,:] j-th row/sample in the i-th view
e1 The first unit basis vector
0K The zero vector in RK

IK The all one vector in RK .

Table 1: Description of notations in this paper.

Anchor-based multi-view clustering methods have gained
focus for their efficiency in large-scale scenarios, which in-
volve using a small subset of representative points. Both
fixed and optimized anchor-based methods fundamentally
aim to associate original instances with a few representative
points, thereby avoiding exploring global relationships.

Current fixed anchor-based methods obtain anchors us-
ing techniques such as random sampling, k-means, or by
designing heuristic sampling strategies, which are then uti-
lized for subsequent clustering tasks. Although random sam-
pling methods are simple and efficient, they often result
in clustering outcomes that are both unsatisfactory and
unstable. Furthermore, researchers employ a meticulously
crafted algorithm to directly sample data points as anchors
(Xia et al. 2022). To create more representative anchors,
Li et al. believe that anchors should effectively cover the
entire data distribution. Therefore, they alternately sample
anchors based on the feature similarity of data across all
clusters. For more cluster-information induced, many stud-
ies utilize k-means clustering to generate these anchors and
keep them fixed throughout the subsequent process (Li et al.
2015; Yang et al. 2020; Li and He 2020; Yang et al. 2022).
Similarly, Kang et al. firstly propose to replace the self-
expression in multi-view subspace clustering with anchor-
samples expression, making it possible for the subspace-
based methods to handle large-scale clustering scenarios.

In contrast to those fixed-anchor-based approaches men-
tioned above, optimized-anchor-based methods propose an
integrated framework that simultaneously optimizes the
orthogonal anchors and constructs corresponding anchor
graphs. Representative methods (Sun et al. 2021; Wang et al.
2021) consider that the anchors obtained by optimization are
more representative than fixed anchors and propose to opti-
mize the orthogonal anchors and construct an anchor graph
in a unified framework. Based on it, Liu et al. proposes a
one-pass approach to directly obtain the clustering labels by
imposing graph connectivity constraints on the anchor graph
(Liu et al. 2022). Next, various variants of anchor-based or-
thogonal optimization methods are considered, incorporat-
ing aspects such as fusion (Zhang et al. 2023; Wang et al.



2022; Zhang et al. 2022; Li et al. 2023b), noise (Li et al.
2023a; Liu et al. 2024b), and graph constraints (Liu et al.
2024b,a; Yu et al. 2023; Li et al. 2024) and so on.

Despite the success of the current anchor-based MVC
method over the earlier sampling methods, several essential
issues persist. The fixed-anchor-based approach offers better
alignment and balance in the original space with computa-
tional simplicity. However, within it, random sampling and
k-means-based methods have inherent randomness, poten-
tially compromising the stability of subsequent algorithms.
Moreover, designing anchor selection algorithms is often
heuristic and challenging. Optimized anchor-based methods,
on the other hand, effectively enhance anchor diversity and
reduce the need for manual design by imposing orthogonal
constraints. Nevertheless, the orthogonal constraints on the
anchors cause tension in the optimization process between
fitting the data and maintaining orthogonality during opti-
mization, hindering the achievement of compact representa-
tion. In summary, while existing anchor-based methods each
have their advantages and disadvantages, the specific char-
acteristics that anchors should possess for multi-view clus-
tering have not yet been explicitly defined in the literature.
To address this gap, we will present in the subsequent sec-
tion our formal definition of anchor properties, along with a
novel method that adheres to these properties.

3 Methodology
This section begins with the definition of anchor properties
and the construction of anchors. Then, we demonstrate its
integration within our multi-view clustering framework.

3.1 Definition of desired anchors
In anchor-based multi-view clustering, we aim to obtain an-
chors with desirable properties to provide better guidance
for multi-view data representation learning. Conceptually,
we aspire for the anchors to exhibit properties of Diversity,
Balance, and Compactness. However, it is challenging to
constrain the anchors with these properties simultaneously.
To achieve this, we propose to leverage the angular relation-
ships between anchors and formulate the following three key
definitions of anchor property.

Firstly, Definition 1 formalizes the concept of Diversity
that the desired anchor should be as distinct as possible to fa-
cilitate discriminative capacity. We define this diversity met-
ric by considering the mean of the angles between all unique
pairs of anchors to be as large as possible, ensuring that an-
chors are apart from each other.

Definition 1 (Diversity). Given a set of anchors {µi}Ki=1,
the angle θij between any pair of distinct anchors µi and µj

(i ̸= j) is expected to be an obtuse angle. Defining the av-
erage angle θ̄ = 2

K(K−1)

∑
i ̸=j θij , it then subject to 90◦ ≤

θ̄ ≤ 180◦. Equally, −1 ≤ 2
K(K−1)

∑
i̸=j cos(θij) ≤ 0.

Secondly, Definition 2 formalizes the concept of Bal-
ance that anchors should be distributed relatively uniformly,
thereby creating a more robust and stable structure. We
quantify balance by measuring the variance of angles be-
tween different anchor vectors.

Definition 2 (Balance). Given a set of anchors {µi}Ki=1, the
angle θij of different pairs of distinct anchors µi and µj (i ̸=
j) should be similar with minimal variations, satisfying:

Var({θij |∀i, j ∈ [K], i ̸= j}) ≤ ε, (1)

where θij = arccos
(
(µ⊤

i µj)/(∥µi∥2∥µj∥2)
)
, ε is a small

positive threshold. Var(·) is the variance of a set of angles.
Last but not least, while satisfying Diversity and Bal-

ance, the anchor distribution should be as compact as possi-
ble, which means occupying as small space as possible and
avoiding unnecessary increases in dimensionality.
Definition 3 (Compactness). Given a set of anchors
{µi}Ki=1, let dim({µi}Ki=1) denote the dimensionality of the
space spanned by the anchors. Under the conditions spec-
ified by Definition 1 and Definition 2, dim({µi}Ki=1) is ex-
pected to be small, the smaller the better.

3.2 Generate Max-Mahalanobis Anchors
Unlike previous approaches that relied on unstable initializa-
tion or rigid orthogonality constraints on anchors, we pro-
pose to simultaneously consider Diversity, Balance, Com-
pactness criteria for anchors. Anchors satisfying these cri-
teria leverage geometric properties for a diverse and uni-
form distribution of anchors within a compact space. Specif-
ically, we propose a strategy called Max-Mahalanobis An-
chors (MMA) to achieve these properties.

We approach the problem from the perspective of angu-
lar relationships between anchor vectors, aiming to max-
imize the minimum angle between any pair of distinct
anchors. Mathematically, denoting the angle between an-
chors µi and µj as θij , we formulate the problem as: µ∗ =
argmaxµ mini ̸=j θij . Intuitively, this criterion aims to max-
imize the angle between any two centers, which means
that the anchors are as distant from each other as possible
in the anchor feature space. Such dispersion enhances the
model’s discrimination capacity by reducing inter-cluster
overlap, as demonstrated in (Pang, Du, and Zhu 2018; Pang
et al. 2020). However, directly manipulating the angles be-
tween anchors is challenging. Therefore, we define the Ma-
halanobis distance between any two anchors µi and µj as

∆ij =
[
(µi − µj)Σ

−1(µi − µj)
] 1

2 , and the target problem
can be equivalently transformed into the following form:

µ∗ = argmax
∆

min
i ̸=j

1

2
∆2

ij . (2)

Denoting the minimal distance as MiD = mini ̸=j
1
2∆

2
ij

and ∥µi∥22 = C ∀i ∈ [K], where C is a positive constant,
the following theorem provides a tight upper bound of MiD.
Theorem 1. Given a set of anchors {µi}Ki=1 where∑K

i=1 µi = 0K and ∥µi∥22 = C, we can derive an upper
bound for MiD:

MiD ≤ KC

K − 1
.

The equality holds if and only if

µ⊤
i µj =

{
C i = j,

C/(1−K) i ̸= j,
(3)

where 0 ≤ i, j ≤ K. See Appendix for detailed proof.



A set of anchors that satisfies Eq. (3) is the optimal an-
chors µ∗, denoted as Max-Mahalanobis Anchors (MMA),
indicating that they reach the maximum of the minimal Ma-
halanobis distance between any two distinct anchors. To
achieve this condition, we design the following strategy to
obtain anchors that meet the desired criteria:

a) Initialization: Initialize µ∗
1 = e1 and µ∗

i = 0K ∀i ≥ 2,
where e1 = [1, 0, · · · , 0]T ∈ RK is first unit basis vector
and 0K is a K-dimension zero vector.

b) Recursive generation: Starting from µ∗
2, recursively gen-

erate anchors according to Eq. (4):

µ∗
i (j) =

{
−

1
K−1+⟨µ∗

i ,µ
∗
j ⟩

µ∗
j (j)

j ̸= i,√
1− ∥µ∗

i ∥22 j = i,
(4)

where 2 ≤ i ≤ K and 1 ≤ j ≤ i.
c) Uniform scaling: Apply a uniform scaling to the anchors

by setting µ∗
k =

√
C · µ∗

k, ∀k ∈ [K].

In light of the design of MMA, we demonstrate through
Theorems 2 and Theorems 3 that the optimal µ∗ generated
by MMA exhibit the properties of Diversity and Balance.

Theorem 2. Our Max-Mahalanobis Anchors µ∗ strictly sat-
isfies the Diversity property in Definition 1, i.e., the average
angle between any two distinct anchors in µ∗ lies between
90◦ and 180◦.

Proof. Since our MMA µ∗ satisfies Eq. (3), the angle θij
between any two distinct anchors is constant, i.e.,

θij =
µ⊤
i µj

∥µi∥2∥µj∥2
= arccos(

1

1−K
), ∀1 ≤ i ̸= j ≤ K,

where K is the number of clusters.
Therefore, the average angle satisfies

θ̄ =
2

K(K − 1)

∑
i ̸=j

θij = arccos(
1

1−K
).

Given that K ≥ 2 (as there must be at least two clusters),
we have 1

1−K ∈ [−1, 0), consequently θ̄ ∈ (90◦, 180◦].

Theorem 3. Our Max-Mahalanobis Anchors µ∗ strictly
possess the Balance property in Definition 2. Particularly,
the angles between any two distinct anchors in µ∗ are the
same and the variance of them is thus zero.

Proof. Similar to the proof of Theorem 2, the angle θij
between any two distinct anchors is constant, i.e., θij =
arccos( 1

1−K ),∀1 ≤ i ̸= j ≤ K. Let Θ = {θij |i ̸= j},
the variance of the angles between any two distinct anchors
satisfies Var(Θ) = 0, indicating that the MMA possess the
“Balance” property with ε = 0.

To elucidate the Compactness of MMA, we provide
an intuitive understanding of the shape of MMA in low-
dimensional cases. When K = 2, the MMA correspond to
two vertices of a line segment. For K = 3, they form three
vertices of an equilateral triangle. In the case of K = 4, the

MMA correspond to the four vertices of a regular tetrahe-
dron. This geometrical phenomenon demonstrates that the
anchors generated by our MMA strategy are confined to
K − 1 dimensions space, which is more compact compared
to the di dimensions of fixed anchors in the original data
space and the K dimensions of orthogonal anchors. The
lower-dimensional manifold on which our MMA are dis-
tributed offers advantages in measuring distances for clus-
tering tasks in high-dimensional data space.

3.3 MMA guidance for multi-view clustering
Given the multi-view dataset X = {X(i)}Vi=1 composed
of V views and N instances, where X(i) ∈ RN×di and di is
the dimension of the samples from i-view. Having obtained
a set of rationally designed anchors µ∗ by MMA, we aim
to establish mappings from multiple views to these shared
optimal anchors. Typically, we have the following objective:

min
B,{P(i)}V

i=1,γ

V∑
i=1

γ2
i ∥X(i) −Bµ∗P(i)∥2F + λ∥B∥2F (5)

s.t. P(i)P(i)⊤ = IK ,B ≥ 0,B1K = 1N ,γ⊤1V = 1.

In Eq. (5), µ∗ ∈ RK×K is fixed to be our designed MMA.
The cross view B ∈ RN×K is the new consensus represen-
tation of multi-view data. P(i) ∈ RK×di is the i-th view
projection between MMA space and original data space.

In the following, we employ the coordinate descent
method to solve the optimization problem Eq. (5), optimiz-
ing one variable at a time while keeping the others fixed.
Specifically, the optimization comprises three steps:

1) Optimize {P(i)}Vi=1 while fixing B and γ. For
each view, we have the following problem w.r.t. P(i):
minP(i) ∥X(i)−BµP(i)∥2F , s.t. P(i)P(i)⊤ = IK . The opti-
mization goal can be simplified to maxP(i) Tr(P(i)⊤Mi) by
expanding the objective and ignoring irrelevant terms, where
Mi = µ⊤B⊤X(i). Assuming the singular value decompo-
sition (SVD) of Mi is Mi = UmΣmV⊤

m, the optimal P(i)

is given by P(i) = UmV⊤
m (Wang et al. 2019).

2) Optimize B while fixing γ and {P(i)}Vi=1. The
optimization problem can be rewritten as the following
Quadratic Programming (QP) problem. For each row in B,

min
bj

1

2
bjQb⊤

j + c⊤b⊤
j , s.t. bj1 = 1,bj ≥ 0, (6)

where bj = B[j,:] ∈ R1×K refers to the j-th row of B.
Q =

∑V
i=1 γ

2
i µµ

⊤ + λIK is a symmetric matrix, and
c⊤ = −

∑V
i=1 γ

2
i X

(i)
[j,:]P

(i)⊤µ⊤. Therefore, the optimiza-
tion problem for B is transformed into solving QP problems
for each row bj , which can be efficiently solved and paral-
lelized to accelerate the calculation.

3) Optimize γ while fixing B and {P(i)}Vi=1. Setting
βi = ∥X(i) − BµP(i)∥2F , we can obtain the following
problem: minγ

∑V
i=1 γ

2
i βi, s.t. γ⊤1 = 1,γ ≥ 0, where

γ = [γ1; · · · ; γV ] ∈ RV . The optimal γ can be obtained by

γi =
1
βi∑V

i=1
1
βi

according to the Cauchy-Schwarz inequality.



Algorithm 1: MMA guidance for multi-view clustering

Input: Multi-view data {X(i)}vi=1, constant C, #clusters K.
Initialize: Initialize B by concatenating the identity matrix
and the zero matrix. Initialize γi with the average weight 1

V .
1: Generate Max-Mahalanobis Anchors µ∗.
2: while not converged do
3: Update P(i) = UmV⊤

m.
4: Update B by solving problem (Eq. (6)).

5: Update γi =
1
βi∑V

i=1
1
βi

.

6: end while
Output: Perform k-means on the left singular vector Ub of
B to obtain the final clustering results.

The overall algorithm process is delineated in Algo-
rithm 1. As iteration progresses, the value of the objective
function monotonically decreases and is bounded by zero,
thus guaranteeing convergence. To demonstrate the guid-
ance of our MMA on the consensus representation learn-
ing, we derive the first-order derivative1 of the objective
function in Eq. (5) w.r.t. B, which is given by ∇J (B) =

2BE − 2Gµ∗⊤
, where G =

∑V
i=1 γ

2
i X

(i)P(i)⊤ and E =∑V
i=1 γ

2
i µ

∗µ∗⊤
+λIK . After each gradient update, the new

consensus representation can be formulated as:

Bt+1 = Bt −∇J (B) = Bt(IK − 2E) + 2Gµ∗⊤
. (7)

Eq. (7) shows that the new representation is actually an
interpolation between the previous one and our MMA,
i.e. µ∗. Given a suitable hyperparameter λ, the new data
representation B will progressively converge towards our
MMA throughout the iteration. Specifically, the whole ob-
jective continually adjusts the data representation to better
align with the underlying structure expressed by our well-
designed MMA. This alignment process facilitates cluster
separation and enhances the learned representation’s overall
discriminative ability.

4 Experiment
This section compares MAGIC with state-of-the-art meth-
ods. We first introduce the datasets, compared methods and
the experimental setup, followed by the detailed analysis.

4.1 Experimental Setup
We conduct experiments on the following ten widely-used
datasets: BBC, Wikipedia, Reuters(Amini and Goutte 2013),
100Leaves, Cora, Wiki fea (Costa Pereira et al. 2014),
ALOI-100, VGGFace, YouTubeFace, CIFAR100, Detailed
information and links to the datasets are in the Appendix.

We compare our proposed approach with nine state-of-
the-art methods. These methods represent a diverse range
of techniques in the field of MVC and anchor-based MVC.
The compared methods are as follows: BMVC (Zhang et al.
2018), LMVSC (Kang et al. 2020b), SFMC (Li et al. 2020),
FPMVS (Wang et al. 2021), OMSC (Chen et al. 2022b),

1We omit the constraints for the purposes of interpretation.

AIMC (Chen et al. 2022a), AWMVC (Wan et al. 2023),
SMSC (Ma et al. 2024), RCAGL (Liu et al. 2024b).

For fair comparison, we use the official baseline codes.
For methods requiring k-means, we run 50 times to obtain
the best results. Optimal parameters are determined via grid
search within the recommended parameter ranges. The pa-
rameters involved in this study include the constant C and
the balance parameter λ. For simplicity, we set C = 1, leav-
ing λ as the only hyperparameter that requires tuning. Based
on previous research, we use λ ∈ {0.01, 1, 10, 100, 1000}.
We utilized widely used clustering metrics such as Accuracy
(ACC), Normalized Mutual Information (NMI), Purity and
Fscore, where higher values indicate better performance.
All experiments are executed using MATLAB 2023b on an
AMD EPYC 7513 32-Core Processor.

4.2 Clustering Performance
We compare our method with the state-of-the-art algorithms
on ten datasets. Tab. 2 presents the detailed results for all
metrics. We have the following observations:

(1) Our method surpasses competitors on most metrics,
achieving the highest ACC and NMI across all datasets.
It improves by 18.25%, 7.92%, 6.00%, 11.08%, and
7.22% over the second-best method on the BBC, Reuters,
100Leaves, Cora, and Wiki fea datasets, respectively, with
similar gains across other metrics. This demonstrates the su-
periority of our approach’s clustering performance.

(2) Our method shows robust performance across diverse
datasets, from text to image domains, demonstrating adapt-
ability to different multi-view data types. It also excels on
datasets with many clusters, achieving the best ACC, NMI,
and F-score on ALOI-100, VGGFace, and CIFAR100, high-
lighting its effectiveness in complex clustering scenarios.

(3) Our proposed MAGIC approach consistently out-
performs fixed-anchor-based MVC methods (LMVSC and
SFMC) and optimized-anchor-based MVC methods (FP-
MVS, OMSC, AIMC, and RCAGL) across all datasets. This
highlights the effectiveness of our well-designed anchor
properties and the model validity. Additionally, methods
with optimized anchors generally outperform fixed-anchor
methods due to the consideration of anchor diversity and
balance through orthogonal constraints.

To illustrate our method’s advantages, we visualize the
new data representations B and optimal anchors µ in
Fig. 1, comparing them to FPMVS and OMSC on BBC and
Wiki fea datasets. FPMVS and OMSC show anchor collapse
on the BBC dataset shown in the left panel of Fig. 1, leading
to incorrect data aggregation, whereas our method displays
a diverse anchor distribution, guiding the data to better rep-
resentations. On the Wiki fea dataset in the right panel of
Fig. 1, our approach achieves a more balanced anchor dis-
tribution, leading to compact intra-cluster and distinct inter-
cluster separations. This demonstrates the effectiveness of
our anchors in improving clustering structures. The visual
evidence aligns with quantitative results, highlighting our
method’s ability to enhance diversity, balance, and compact-
ness, reducing representation collapse and improving repre-
sentation learning across multiple views.



Dataset BMVC LMVSC SFMC FPMVS OMSC AIMC AWMVC SMSC RCAGL Proposed

ACC

BBC 55.91 40.29 33.58 32.26 35.91 27.15 65.55 37.23 54.75 83.80
Wikipedia 19.05 21.79 46.75 32.61 37.95 56.85 23.95 32.32 30.88 60.90
Reuters 35.67 39.83 17.25 41.42 45.42 46.58 44.25 47.50 47.58 55.50
100Leaves 71.81 55.75 70.88 34.88 36.56 31.75 72.13 64.81 60.56 78.13
Cora 32.57 33.20 30.28 55.76 55.54 31.50 39.18 42.25 50.44 66.84
Wiki fea 43.16 18.70 20.03 31.47 36.74 54.29 21.70 41.42 30.81 61.51
ALOI-100 62.86 55.32 67.20 32.95 35.02 31.60 69.22 53.20 39.41 73.77
VGGFace 10.29 7.48 3.67 9.70 9.71 10.30 14.52 9.41 12.97 15.61
YouTubeFace 47.58 78.79 35.61 71.49 78.26 76.02 83.61 OOM 78.68 86.55
CIFAR100 7.71 7.27 1.60 7.16 7.49 7.39 10.77 OOM 9.58 11.82

NMI

BBC 29.10 10.09 1.87 2.97 6.86 2.69 41.33 18.95 30.34 62.31
Wikipedia 6.08 6.47 48.71 17.34 25.60 53.92 11.31 19.75 17.36 54.06
Reuters 16.24 21.40 1.46 21.10 20.41 24.54 20.14 22.63 26.04 30.57
100Leaves 86.22 79.02 86.33 70.22 74.06 71.32 85.48 82.68 84.43 90.36
Cora 10.10 6.93 0.54 30.02 29.78 10.05 24.08 20.68 31.23 45.43
Wiki fea 35.84 5.14 14.31 17.15 21.12 51.87 7.83 31.37 15.02 54.66
ALOI-100 76.36 72.58 75.73 64.39 68.56 64.93 81.90 69.16 70.67 83.05
VGGFace 14.48 9.41 1.59 12.75 13.12 14.25 17.72 11.06 16.55 19.27
YouTubeFace 55.84 82.49 48.46 77.40 82.83 83.35 83.66 OOM 80.89 84.81
CIFAR100 13.50 13.57 1.79 13.62 14.19 14.26 17.83 OOM 17.57 17.83

Purity

BBC 55.91 87.03 33.87 37.37 40.58 34.60 65.55 39.12 78.10 83.80
Wikipedia 22.37 46.18 51.08 35.79 43.00 60.90 26.70 34.63 35.50 61.62
Reuters 39.83 48.50 17.42 45.33 45.83 46.58 46.58 47.50 52.00 57.25
100Leaves 74.81 67.94 72.75 36.63 36.94 32.81 75.06 68.06 80.44 81.00
Cora 36.48 95.61 30.39 55.76 55.54 38.48 46.20 46.79 63.89 66.84
Wiki fea 47.17 36.36 23.17 33.67 38.97 60.68 25.47 43.86 34.12 62.81
ALOI-100 64.95 64.51 68.20 33.61 36.15 32.82 70.84 55.25 75.22 75.08
VGGFace 11.83 10.42 3.84 9.97 10.14 10.83 15.83 10.41 18.81 16.65
YouTubeFace 55.26 83.30 42.06 76.22 83.03 84.90 83.74 OOM 84.80 86.57
CIFAR100 8.51 10.08 1.88 7.34 7.63 7.56 12.09 OOM 21.15 12.89

Fscore

BBC 42.90 37.61 37.97 27.59 28.75 24.77 51.38 40.88 48.55 73.64
Wikipedia 12.42 17.62 32.26 21.12 26.65 49.42 15.04 20.52 19.09 50.72
Reuters 26.70 28.87 28.41 30.64 32.86 33.22 30.86 32.51 33.79 40.35
100Leaves 62.25 41.54 35.48 22.42 20.82 17.51 62.28 53.57 47.37 71.23
Cora 23.41 30.88 30.39 37.35 37.16 21.91 31.70 29.85 38.43 48.39
Wiki fea 35.92 15.82 19.09 21.46 23.77 48.07 14.32 30.97 19.30 54.84
ALOI-100 50.04 41.31 12.05 17.99 19.50 13.32 57.73 35.43 24.06 59.73
VGGFace 5.34 3.73 4.15 5.75 5.70 5.79 7.50 4.21 6.73 8.03
YouTubeFace 42.02 77.38 29.40 69.60 74.63 77.77 83.28 OOM 66.49 79.78
CIFAR100 3.47 3.01 1.98 3.40 3.46 3.40 4.49 OOM 4.14 5.01

Table 2: The clustering performance comparison across ten datasets. The best results are in bold, while the second-best results
are indicated with an underline. “OOM” denotes that the algorithm encountered an out-of-memory error on our device.

4.3 Running time
We compared our method’s running time against other base-
lines across all datasets. Fig. 2 shows the runtime compari-
son, with the y-axis scaled log10 to accommodate the wide
range of execution times. Our method shows competitive ef-
ficiency, performing well on smaller datasets like BBC and
Wikipedia, outpacing several baselines. Our approach main-
tains reasonable runtime while some methods fail to com-
plete for larger, complex datasets (e.g., VGGFace, YouTube-

Face, CIFAR100). Although BMVC and AIMC occasion-
ally show faster runtime, our method consistently delivers
superior clustering performance with acceptable runtime.

4.4 Convergence and Parameter Analysis
The convergence curve in Fig. 3(a) for the Wiki fea dataset
shows that the objective function value decreases monoton-
ically with the alternating variable updates, confirming the
algorithm’s convergence. The ACC curve increases as iter-
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Figure 1: Comparison of feature and anchor visualizations
using t-SNE on BBC and Wiki fea datasets.

ations progress, indicating improved accuracy with conver-
gence. Clustering performance rapidly improves alongside
the objective function’s decline.

The proposed method has one hyperparameter λ, balanc-
ing the regularization term. Fig. 3(b) shows ACC results
across datasets under different λ. Our method performs sta-
ble, achieving satisfactory ACC for λ ranging from 1 to 100,
demonstrating robustness to λ selection. Generally, we rec-
ommend λ = 10 across most datasets.

4.5 Ablation Study
We conduct an ablation study to assess our proposed MMA”
component’s effectiveness across anchor-based MVC meth-
ods. We replaced orthogonal anchors with our MMA mod-
ule in baselines SMVSC, OMSC(K), and AIMC, with
MMA-enhanced variants denoted by appending “-MMA”.
△ refers to the variation relative to the original method.
Tab. 3 shows ACC improvement across datasets with MMA
component. SMVSC-MMA significantly outperforms orig-
inal SMVSC, with improvements ranging from +10.08%
to +47.89%. Similarly, AIMC-MMA consistently surpasses
AIMC. OMSC(K)-MMA also shows improvements in most
cases, particularly on the YouTubeFace dataset (+4.98%),
with a slight decrease on the ALOI-100 dataset. These re-
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Figure 3: The convergence curves and parameter analysis.

sults validate our MMA’s effectiveness in boosting MVC ac-
curacy, highlighting its potential for further applications.

Method BBC 100Leaves ALOI-100 YouTubeFace

SMVSC 35.91 38.19 34.82 76.47
SMVSC-MMA 83.80 78.13 73.77 86.55

△ (+47.89) (+39.94) (+38.95) (+10.08)

OMSC(K) 32.41 34.31 32.91 71.49
OMSC(K)-MMA 35.91 34.94 32.69 76.47

△ (+3.50) (+0.62) (-0.22) (+4.98)

AIMC 27.15 31.75 31.60 76.02
AIMC-MMA 28.91 32.56 33.91 76.44

△ (+1.75) (+0.81) (+2.31) (+0.42)

Table 3: Ablation study of MMA’s impact on accuracy.

5 Conclusion
This paper introduces MAGIC, a novel approach address-
ing the limitations of existing anchor-based MVC meth-
ods. Firstly, we theoretically formalize the properties of
Diversity, Balance and Compactness inherent in anchors.
Then, we propose a rational strategy MMA, considering
inter-anchor Mahalanobis distances to meet the properties
with theoretical guarantees. Furthermore, MAGIC itera-
tively aligns features with well-designed MMA, enhancing
representation discriminability and cluster clarity, thereby
improving MVC performance. Experiments confirm our
MMA’s superiority in MVC. Additionally, our approach is
applicable to any task requiring anchors. Future work in-
cludes a deeper exploration of anchor properties and their
integration with multi-view scenarios.
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