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 A B S T R A C T

Deep graph clustering has attracted increasing attention in data analysis recently, which leverages the topology 
structure and attributes of graph to divide nodes into different groups. Most existing deep graph clustering 
models, however, have compromised performance due to a lack of discriminative representation learning and 
adequate support for learning diverse clusters. To address these issues, we proposed a Diversity-promoting 
Deep Graph Clustering (DDGC) model that attains the two essential clustering principles of minimizing the 
intra-cluster variance while maximizing the inter-cluster variance. Specifically, DDGC iteratively optimizes the 
node representations and cluster centroids. First, DDGC maximizes the log-likelihood of node representations 
to obtain cluster centroids, which are subjected to a differentiable diversity regularization term to force the 
separation among clusters and thus increase inter-cluster variances. Moreover, a minimum entropy-based 
clustering loss is proposed to sharpen the clustering assignment distributions in order to produce compact 
clusters, thereby reducing intra-cluster variances. Extensive experimental results demonstrate that DDGC 
achieves state-of-the-art clustering performance and verifies the effectiveness of each component on common 
real-world datasets. Experiments also verify that DDGC can learn discriminative node representations and 
alleviate the over-smoothing issue.
1. Introduction

Graph clustering, a fundamental technique in data analysis, aims 
to partition all nodes within a graph into 𝑘 distinct clusters. Ideally, 
nodes within the same cluster have more similar topological features 
and attribute values than nodes in other clusters. Typical applications 
of graph clustering include community detection [1–3], group segmen-
tation [4–6], image segmentation [7–10], domain adaptation [11–13]. 
The conventional graph clustering algorithms [14,15] have demon-
strated their effectiveness in grouping nodes based on well-defined 
handcrafted features and well-established similarities. However, their 
effectiveness heavily relies on the feature selection and the initial 
centroid assignment. Recently, ‘‘deep graph clustering’’ has emerged 
as a promising approach by incorporates deep learning frameworks, 
such as Deep Neural Networks (DNN) [16], Graph Neural Networks 
(GNN) [5,17,18], with the conventional clustering algorithms. This 
fusion aims to transform graph data from an original complex structure 
space to a low-dimensional feature space to effectively facilitate the 
task.
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Most existing deep graph clustering algorithms are Two-step Meth-
ods [15,19,20], including (1) first pretrain a graph encoder to obtain 
low-dimensional node representations via minimizing an unsupervised 
or self-supervised graph representation learning loss, such as the recon-
struction loss or contrastive learning loss [21], and then (2) performing 
conventional clustering algorithms like 𝑘-means [15,22] or spectral 
clustering [14,23] on the learned node representations to obtain the 
clustering results. Although these algorithms have achieved attractive 
clustering performance, an emerging challenge lies in the fact that 
the node representations learned by the first step are not dedicatedly 
designed or tailored for clustering tasks in the second step, leading to 
sub-optimal clustering results.

To bridge these two steps, after pretraining an encoder and clus-
ter centroids like Two-step methods, DAEGC [24] first introduces a 
fine-tuning stage to simultaneously training node representations and 
centroids by minimizing a Kullback–Leibler (KL) clustering loss. Recent 
studies mainly focus on designing clustering loss without relying any 
labels [25] and resorting to advanced techniques to develop effective 
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Fig. 1. The clustering accuracy (ACC) and reconstruction loss of GAE in the pretraining 
process on the Cora dataset. With the convergence of the loss curve, the accuracy 
of GAE exhibits persistent oscillations, failing to converge, thus struggling to yield 
clustering-friendly node representations.

graph encoder [26,27], which can enable models capture more se-
mantic information for benefiting representation learning to facilitate 
better clusters. However, all those methods typically treat centroids as 
parameters and fine-tune them with graph encoder via minimizing a 
KL-based clustering loss in the fine-tuning stage. We refer to this type 
of methods as Fine-tuning Methods. The detailed comparison is shown in 
Fig.  4. In fact, both Two-step Methods and Fine-tuning Methods typically 
rely heavily on an well-pretrained graph encoder to start up the graph 
clustering task.

Although Fine-tuning Methods have achieved promising results, our 
analysis still reveal significant limitations of the widely-used graph 
encoder, GAE, and the associated KL-divergence clustering loss in 
the Fine-tuning Methods. Specifically, even a well-pretrained encoder,
e.g., GAE, fails to yield clustering-friendly node representations. As 
depicted in Fig.  1, the accuracy (ACC) exhibits extreme fluctuation 
throughout pretraining epochs, despite the early convergence of the 
reconstruction loss of GAE. This fluctuation arises because the neighbor 
aggregation mechanism in graph convolution of GAE tend to overly 
smooth the node representations, thereby reducing their discrimina-
tion. Consequently, nodes struggle to confidently find the appropriate 
group, significantly impacting the clustering performance. So strength-
ening node discrimination is important to improve the graph clustering 
performance.

Moreover, the limitation of high dependency on the quality of the 
pretrained encoder is demonstrated in Fig.  2. Take DAEGC [24] as 
an example of the Fine-tuning Methods, we use pretrained encoders of 
different epochs as the initializations in the fine-tuning stage, including 
encoders at 1, 4, and 30 pretraining epochs from Fig.  1, correspond-
ing to the least effective, moderately effective, and most effective 
pretrained encoders. After fine-tuning, in Fig.  2, the final clustering 
results yielded by DAEGC, labeled as NMI_1, NMI_4, and NMI_30, 
clearly demonstrate the lowest, better, and best clustering performance, 
which closely mirrors the quality of the pretrained graph encoder. 
This phenomenon verifies that Fine-tuning Methods are very sensitive 
to the pretraining encoder. That is because applying the conventional 
KL-divergence as the clustering loss can prematurely restrict the ex-
ploration of representation space. Specifically, in KL-based clustering 
loss, the cluster centers and encoder are coupled as parameters, both 
need to be optimized together through gradient back-propagation. This 
highlights the importance of encouraging GAE to be pretrained solely 
in the pretraining stage of Fine-tuning Methods .

To examine how Fine-tuning Methods are influenced by the pre-
trained encoder, we introduce a metric, Ratio of Similarity (RoS), which 
quantifies the distinctiveness of node representations in the context of 
clustering: 

RoS =
𝑛2

∑𝑚
𝑖,𝑗=1 𝝁

𝖳
𝑖 𝝁𝑗

2 ∑𝑛 𝖳
, (1)
𝑚 𝑖,𝑗=1 𝐳𝑖 𝐳𝑗
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Fig. 2. The NMI and RoS matrices of the fine-tuning method, DAEGC, on the Cora 
dataset. Initialized with the pre-trained encoder at 1, 4, and 30 epochs in Fig.  1, DAEGC 
yields the clustering results represented by purple, green, and orange colors. Notably, 
NMI and RoS exhibit a negative correlation. Higher NMI values and lower RoS values 
indicate better clustering results.

where {𝝁𝑖}𝑚𝑖=1 denotes 𝑚 cluster centroids, and {𝐳𝑖}𝑛𝑖=1 denotes 𝑛 node 
representations. A lower RoS indicates a larger degree of separation be-
tween clusters. We observe the change of ROS with the increase of fine-
tuning epoch. As illustrated in Fig.  2, the fine-tuning method, DAEGC, 
initialized using the best/worst pretrained encoder at 1∕30 pretraining 
epochs, performs the highest/lowest Normalized Mutual Information 
(NMI) (orange/purple dashed line), but yields the lowest/highest RoS 
values (orange/purple solid line), respectively. This implies that RoS 
is generally negatively correlated to clustering performance; the lower 
the RoS, the higher the NMI. This finding motivates us to diversify 
centroids and separate clusters to enhance node discrimination for 
improving the clustering task.

In this paper, we propose a novel Diversity-promoting Deep Graph 
Clustering model (DDGC) that simultaneously pursues two essential 
principles of maximizing inter-cluster variance and minimizing intra-
cluster variances, as illustrated in Fig.  3. Specifically, DDGC iteratively 
updates the cluster centroids and node representations rather than cou-
pling them to update in the KL-divergence clustering loss. We maximize 
the log-likelihood function of node representations to learn cluster 
centroids, where a diversity regularization term among centroids is 
exerted to gradient for diversifying centroids, thus increasing the inter-
cluster variances. Besides, we propose a Minimum Entropy (ME)-based 
clustering loss to sharpen the assignment distribution for reducing 
the intra-variances, which makes centroids guide intra-cluster nodes 
to move toward their positions and directions. We refer centroids as 
‘‘bellwethers’’, due to the leading update effect of latent node features 
within clusters. The cohorts of nodes follow the diverse bellwethers, 
to update. By seeking diverse bellwethers, different clusters become 
more separated. Finally, we can obtain well-separate clusters with 
wider cluster boundaries. Fig.  13(b) in Appendix  A illustrates the 
dynamic process of our ‘‘bellwethers’’ leading representation learning. 
Besides, a gradient analysis between the conventional KL- and proposed 
ME-based clustering loss is provided to verify the advantage of the 
mechanism of sharpening the assignment distribution in our ME-based 
clustering loss. Our DDGC model achieves state-of-the-art clustering 
performance by implementing techniques of diversifying centroids and 
sharpening assignment distribution. These techniques contribute to 
stabilizing DDGC trained from scratch. Additionally, DDGC is verified 
to learn discriminative representations, particularly in alleviating over-
smoothing. The main contributions of this paper are summarized as 
follows:

• A new graph clustering model. We propose a novel graph clus-
tering model, DDGC, which iteratively updates the cluster cen-
troids and node representations. The proposed seeking-diverse-
bellwethers module is designed to learn diverse cluster centroids, 
and then our ME-based clustering loss and reconstruction loss are 
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Fig. 3. Pulling nodes toward their centroid and pushing centroids away from each 
other can minimize the intra-cluster variance while maximizing the inter-cluster 
variance, leading to diverse and compact clusters.

minimized together to update node representations. The sharpen-
ing assignment mechanism will force nodes in groups to keep up 
with the bellwethers to produce compact clusters.

• Diversified centroids. We propose to maximize the
log-likelihood function of node representations via gradient as-
cent to update cluster centroids, where a differentiable diversity 
regularization term is introduced into the gradient function to en-
force the diversity between cluster centroids, thereby increasing 
inter-cluster variance.

• Better clustering performance. We have empirically demon-
strated that the proposed method can learn diverse and compact 
clusters, and achieve state-of-the-art clustering performance. The 
Ablation study confirms the effectiveness of each technique. Fur-
thermore, we also conducted experiments to verify that our DDGC 
is not sensitive to the pretraining of the encoder and effectively 
alleviates the over smoothing issue.

The paper is structured as follows: Section 2 presents recent ad-
vancements in deep graph clustering; Section 3 explains the proposed 
DDGC for graph clustering in detail; Section 4 reports on the compre-
hensive experimental study. Finally, Section 5 provides the conclusion 
of the paper.

2. Related work

This section provides a review of the relevant literature. Deep clus-
tering seeks to employ neural networks to learn deep feature represen-
tations favoring the clustering tasks. We focus on the node-level graph 
clustering task. With advancements in graph representation learning, 
significant improvements have been achieved in graph clustering. Ex-
isting algorithms for deep graph clustering can be categorized into two 
groups: (i) Two-step Methods and (ii) Fine-tuning Methods.

2.1. Two-step methods

Two-step Methods first train a graph encoder to learn node rep-
resentations via minimizing an unsupervised loss. Subsequently, they 
perform conventional clustering methods, such as k-means and spectral 
learning, on the learned node representations to obtain clustering 
results. The key differences among them lie in the choice of graph 
representation learning models, which include the variants of graph 
Auto-Encoder and graph contrastive learning models.

Proper design of the graph convolution layer is a key factor in 
improving clustering performance. To employ GCN in graph autoen-
coder, GAE [28] was proposed first to transform each node into latent 
representations via GCN and then reconstruct the adjacency matrix via 
the decoder. [15] implemented a sparse autoencoder model that penal-
izes both the reconstruction error and the sparsity error in the hidden 
layer for learning non-linear representations for the clustering. [29] 
further improved the sparse autoencoder by enforcing a constraint of 
KL divergence between the distribution of node attributions on clusters 
and predicted distribution by the neural network for better clustering 
3 
Fig. 4. The comparison between the Two-step Methods and Fine-tuning Methods. In 
the two-step method, the first step ¬ aims to learn node representations via graph 
autoencoder. Based on the learned representations, the second step ­ aims to learn 
cluster centroids via performing the conventional clustering methods, e.g., K-means 
or spectral method. Besides, the existing Fine-tuning Methods typically use the graph 
encoder learned by the two-step method as initialization. ® aims to jointly train cluster 
centroids and node representations.

performance. [19] proposed an adversarial regularization to enforce 
the representations to match a prior distribution for learning compact 
representations and then applied 𝑘-means on the representations. [30] 
developed a denoising strategy to reduce redundant information and 
noise to enhance the robustness of the autoencoder. [31] proposed a 
marginalized graph convolutional network to corrupt network node 
content and marginalized the corrupted features to learn graph fea-
ture representations, upon which spectral clustering was applied for 
clustering.

Following the success of contrastive learning in graph and computer 
vision, researchers have recently investigated how to combine con-
trastive learning and traditional clustering methods. Specifically, [20] 
adopted contrastive learning to learn unsupervised node representa-
tions, instead of graph autoencoder, where the positive samples of the 
query node are designed to be randomly drawn from the cluster to 
which the query belongs, while the negative samples are randomly 
sampled from other clusters. However, the lack of adequate task-
orientated representation learning always limits the performance of
Two-step Methods. That is, unsupervised representation learning models 
are not designed dedicatedly for graph clustering. Thus, the clus-
tering may be misguided by the representation learning, leading to 
non-optimal results.

2.2. Fine-tuning methods

To achieve the mutual benefit between these two steps, Fine-tuning 
Methods propose to minimize a designed KL-based clustering loss for 
simultaneously training node representations and cluster centers during 
the fine-tuning stage. The main challenge for crafting Fine-tuning Meth-
ods lies in devising a well-thought-out clustering loss and establishing 
effective self-supervised strategies for node clustering.

In particular, after pretraining a graph encoder and centroids, 
DAEGC [24] simultaneously optimized node representations and cen-
troids by minimizing the designed task-oriented clustering loss in 
the fine-tuning stage. It adopted the second power of the predicted 
clustering assignment distribution of each node as the target distribu-
tion. The KL-divergence between these two distributions served as the 
clustering loss to jointly fine-tune the node representations and cluster 
centroids. The peaked target distribution acted as the self-generated 
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pseudo-label to supervise the learning of node clustering. Guided by 
‘‘confident’’ assignments as soft labels, this KL-based clustering loss 
can drive nodes closer to the cluster centers, leading to more compact 
clusters. SDCN [25] goes further by incorporating an additional clus-
tering loss that evaluates the discrepancy between the soft clustering 
assignment distribution produced by GCN and its second power form, to 
facilitate the fine-tuning process. Meanwhile, DFCN [26] proposed an 
interdependency learning-based structure and an attribute information 
fusion module to explicitly merge the representations learned by an 
autoencoder and a graph autoencoder for consensus representation 
learning. DCRN [27] encoded different augmented graphs into repre-
sentations using a siamese network, subsequently reducing information 
correlation at both sample-level and cluster-level respectively. It is 
worth noting that all these methods employ KL-divergence as the 
clustering loss. All those methods typically treat cluster centroids as 
parameters and fine-tune them with graph encoder via minimizing the 
KL-divergence clustering loss, where the graph encoder and cluster 
centroids are firstly pretrained using an Two-step Method. We refer to 
this type of methods as Fine-tuning Methods.

However, their success hinges upon the selection of a high-quality 
pretrained graph encoder and properly initialized cluster centroids. 
Their clustering performance often exhibits high sensitivity to the pre-
trained model, as empirically depicted in Fig.  2. Only when the high 
quality of the graph encoder is selected as the initialization in the fine-
tuning stage, the clustering performance can be roughly guaranteed. 
However, in practical tasks, determining a reliable stopping criterion 
for selecting the pretrained encoder can be challenging. Therefore, joint 
training of encoders and centroids from scratch is typically necessary.

Different from the above Two-step and Fine-tuning Methods for the 
node-level graph clustering task we focus on, [32] introduced a graph-
level clustering method, Deep Graph-level Clustering (DGLC). DGLC 
employed a graph isomorphism network to learn graph-level represen-
tations by maximizing mutual information between the representations 
of entire graphs and substructures. [33] devised a general graph clus-
tering method applicable to four different graph types, encompassing 
directed, undirected, heterogeneous, and hyperattributed graphs. [34] 
mainly focused on developing a dual variational autoencoders by max-
imizing a derived variational lower bound. In this paper, we mainly 
design a effective graph clustering framework to iteratively achieve 
these two principles of maximizing inter-cluster variances while mini-
mizing intra-cluster variances, instead of diligently improving the graph 
autoencoder. Besides, numerous existing studies have also focused on 
the task of multi-view clustering task [35–38]. [39] developed a GCN-
based multi-view clustering network with weighting mechanism and 
collaborative training (DMVGC) over the graph and image data with 
a specially designed attention module in the encoder and an adaptive 
weighting mechanism in the decoder for the reconstruction loss. [8] 
designed an anchor-based multi-view graph clustering framework, Ef-
ficient Multi-View Graph Clustering with Local and Global Structure 
Preservation (EMVGC-LG) to optimize anchor construction and graph 
learning to enhance the clustering quality. Additionally, the topic of 
overlapping graph clustering was studied in [40], where a new over-
lapping graph clustering algorithm was proposed that integrates the 
topological structure and attributes into the cluster potential game. In 
computer vision, [7] introduced a new contrastive clustering algorithm 
with graph consistency constraint to reduce the effect of the uncertainty 
of positives and negatives on contrastive clustering for image datasets.

3. Proposed model

In this section, we will specifically describe our graph clustering 
model, Diversity-promoting Deep Graph Clustering model (DDGC). 
First, we introduce the Seeking-Diverse-Bellwether (SDB) module,
where a diversity regularization term is incorporated into the gradient 
ascent formulation of the maximum log-likelihood function to pro-
mote diversity among the cluster centroids, thereby obtaining diverse 
4 
cluster centroids. Furthermore, we introduce a Sharpening Clustering 
Assignment (SCA) module which utilizes the minimum entropy (ME) 
of node assignment distribution as the clustering loss instead of the 
conventional KL-divergence. Our ME-based clustering loss minimizes 
the intra-cluster variance by enforcing a one-hot clustering assignment 
distribution. The SDB module serves as the inner loop to learn the 
diverse centroids based on the learned node representations. In the 
outer loop, with the centroids fixed, the SCA module trains node 
representations by minimizing our ME-based clustering loss and the 
reconstruction loss. The overall structure of our proposed DDGC is 
illustrated in Fig.  5.

Basic Notations. An undirected attributed graph is represented as 
 = { ,  ,𝐗}, where  = {𝑣𝑖}𝑛𝑖=1 denotes the set of nodes with || = 𝑛, 
 represents the set of edges, and 𝐗 ∈ R𝑛×𝑑 indicates the feature matrix 
of nodes where 𝑑 is the feature dimension associated with each vertex. 
The topological structure of the graph is represented as the adjacent 
matrix 𝐀 ∈ {0, 1}𝑛×𝑛, where 𝐀𝑖𝑗 = 1 if there exists an edge between 
nodes 𝑣𝑖 and 𝑣𝑗 ; 𝐀𝑖𝑗 = 0 otherwise. The goal of graph clustering is to 
partition all nodes into the 𝑚 groups, each with its respective cluster 
centroids {𝝁𝑖}𝑚𝑖=1, in the latent space. Node representations 𝐙 ∈ R𝑛×𝑑

can be obtained via training a graph encoder.

3.1. Seeking diverse bellwethers

In this subsection, we specifically introduce the Seeking-Diverse-
Bellwethers (SDB) module, which aims to learn diverse cluster centroids 
from the node representations obtained by the graph encoder. Recall 
that the deep graph clustering task aims to allocate 𝑛 nodes into 𝑚 cate-
gories in the latent space. Suppose that node representations 𝐳 ∈ {𝐳𝑖}𝑛𝑖=1
are drawn from a simplified multivariate Gaussian Mixture Model with 
the probability density function: 𝑝(𝐳|𝜣) ∶= 1

𝑚
∑𝑚

𝑖=1  (𝐳|𝜽𝑖), where 𝜽𝑖 =
{𝝁𝑖,𝜮𝑖} denotes the parameters of the 𝑖th Gaussian with mean vector 
𝝁𝑖 and covariance matrix 𝜮𝑖. Its connection with the Gaussian Mixture 
Model (GMM) has been discussed in Remark  1. Assuming that all nodes 
are independent and identically distributed, the model parameters 𝜣
can be estimated by maximizing the log-likelihood function of all node 
representations, i.e., �̂� = argmax𝜣 log(

∏𝑛
𝑖=1𝑝(𝐳𝑖|𝜣)), where ∏𝑛

𝑖=1𝑝(𝐳𝑖|𝜣)
is the joint probability distribution. The log-likelihood function can be 
derived as: 

𝐹 (𝐙|𝜣) = log (
∏𝑛

𝑖=1𝑝(𝐳𝑖|𝜣)) = 1
𝑛

𝑛
∑

𝑗=1
log

( 1
𝑚

𝑚
∑

𝑖=1
 (𝐳𝑗 |𝝁𝑖,𝜮𝑖)

)

(2)

where (𝒛𝑗|𝝁𝑖,𝜮𝑖) = 1
√

(2𝜋)𝑑det(𝜮𝒊)
exp[− 1

2 (𝒛𝑗−𝝁𝑖)⊤𝜮−𝟏
𝒊 (𝒛𝑗−𝝁𝑖)] represents 

the probability of 𝐳𝑖 conforming to a multivariate normal distribution 
 (𝝁𝑖,𝜮𝑖). It is worth noting that the learnable mean vectors {𝝁𝑖}𝑚𝑖=1
are the cluster centroids we aim to find.

Remark 1 (The Connection with Multivariate Gaussian Mixture Model 
(GMM)). In a multivariate GMM, the probability density function of 
observations is defined as 𝑓 (𝐲|𝜣) =

∑𝑚
𝑖=1 𝜋𝑖 (𝐲|𝝁𝒊,𝜮𝑖) with 

∑𝑚
𝑖 𝜋𝑖 =

1. Given a set of independent observations 𝐘 = {𝐲𝑖}𝑛𝑖=1, the goal of 
multivariate GMM is to learn the parameters of multivariate normal 
distribution 𝜣 = {(𝝁𝒊,𝜮𝑖)}𝑚𝑖=1 and the weights {𝜋𝑖}𝑚𝑖=1, via maximizing 
the following log-likelihood function, 

𝐹𝑔𝑚𝑚(𝐘|𝜣) = 1
𝑛

𝑛
∑

𝑗=1
log

(

𝑚
∑

𝑖=1
𝜋𝑖 (𝐲𝑗 |𝝁𝑖,𝜮𝑖)

)

. (3)

Notably, optimizing both {𝜋𝑖}𝑚𝑖=1 and 𝜣 directly is intractable, so the 
EM algorithm [41] is resorted to updates {𝜋𝑖}𝑚𝑖=1 and 𝜣 by alternating 
the E-step (Expectation-step) and the M-step (Maximization-step), re-
spectively. When 𝜋𝑖 = 1

𝑚 ,∀𝑖 ∈ {1,… , 𝑚}, Eq. (3) is equivalent Eq. (2), 
namely, our clustering objective is a special case of GMM. With the 
assumption of 𝜋𝑖 = 1

𝑚 , each cluster nearly contains an equal number 
of nodes. This assumption of balanced clustering does not adversely 
impact our clustering performance. In this case, the model parameters 



P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322 
Fig. 5. Overview of the proposed DDGC framework. The graph encoder takes the adjacency matrix 𝐀 and feature matrix 𝐗 as the inputs and outputs node representations 𝐙. 
Based on the learned representations, the Seeking-Diverse-Bellwethers (SDB) module learns diverse cluster centroids by the gradient ascent in Eq. (4a). Then, the proposed Sharping 
Clustering Assignment (SCA) module computes the clustering assignment distribution of each node and leverages these distributions to calculate the ME-based clustering loss. The 
total loss, weighting the clustering loss and the reconstruction loss, is minimized to update the graph encoder via stochastic gradient descent while keeping the centroids fixed. 
The flow of gradient ascent is denoted as the red arrows. The grey arrows indicate the gradient ascent in Eq. (4a).
𝜣 can be directly optimized via gradient ascent to maximize the log-
likelihood function in Eq. (2) instead of the iterative optimization of 
the complex EM algorithm.

In general, the model parameters 𝜣 can be estimated via max-
imizing the log-likelihood function 𝐹 (𝐙|𝜣) in Eq. (2). To promote 
the diversity among centroids, we perform the gradient ascent to 
update the cluster centroid {𝝁𝑖}𝑚𝑖=1, where a diversity regularizer is 
incorporated into the gradient function inspired by nonlinear stein vari-
ation gradient descent [42]. More precisely, we perform the following 
gradient ascent to optimize the cluster centroids until convergence: 
𝝁𝑡+1
𝑖 = 𝝁𝑡

𝑖 + 𝜀𝜙(𝝁𝑡
𝑖), ∀𝑖 = 1,… , 𝑚, (4a)

𝜙(𝝁𝑡
𝑖) =

𝑚
∑

𝑗=1

[

∇𝝁𝑡𝑗
𝐹 (𝐙|𝜣) ⋅ 𝑘(𝝁𝑡

𝑗 ,𝝁
𝑡
𝑖) +

𝛼
𝑚
∇𝝁𝑡𝑗

𝑘(𝝁𝑡
𝑗 ,𝝁

𝑡
𝑖)
]

, (4b)

where 𝜙(𝝁𝑡
𝑖) is the gradient of the centroid of cluster 𝑖 at the 𝑡th 

iteration, 𝜀 is the small step size, the function 𝑘(⋅, ⋅) can be any positive 
definite kernel measuring the similarity between two centroids, and 
𝛼 is the balance coefficient to control the regularization strength. In 
Eq. (4a), for each cluster 𝑖 ∈ {1,… , 𝑚}, we can perform the gradi-
ent ascent to obtain the centroid 𝝁𝑡+1

𝑖  of cluster 𝑖 at the (𝑡 + 1)-th 
step. Eq. (4b) is the expansion equations of the gradient 𝜙(𝝁𝑡

𝑖). More 
specifically, in Eq. (4b), the first term aims to fit the given node 
representations by increasing the log-likelihood function. The second 
term is a diversity regularizer, which acts as a repulsive force to prevent 
all cluster centroids from collapsing together into local modes. More 
detailed elaboration on the roles of these two terms in Eq. (4b) is 
provided below:

• Fitting representations. The first term in Eq. (4b) is instrumen-
tal in maximizing the log-likelihood function 𝐹 (𝐙|𝜣) through 
gradient ascent in Eq. (4a), whose role is to fit the given node 
representations 𝐙 ∈ R𝑛×𝑑 . More specifically, the first term com-
putes weighted gradients of the log-likelihood function 𝐹 (𝐙|𝜣)
to each cluster centroid {𝝁𝑡

𝒋}
𝑚
𝑗=1. These weight are determined by 

the similarity 𝑘(𝝁𝑡
𝑖,𝝁

𝑡
𝑗 ) between the centroids of cluster 𝑖 and the 

cluster 𝑗, 𝑗 ∈ {1,… , 𝑚}. The gradient of 𝐹 (𝐙|𝜣) to each cluster 
centroid 𝝁𝑡

𝑗 can be derived as: 

∇𝝁𝑡𝑗
𝐹 (𝐙|𝜣) = 1

𝑛
∑

(𝜮𝑡
𝑗 )
−1(𝐳𝑖 − 𝝁𝑡

𝑗 ), (5)

𝑛 𝑖=1

5 
It is noteworthy that the gradients of all centroids, ∇𝝁𝑡𝑗
𝐹 (𝐙|𝜣), 𝑗 ∈

{1,… , 𝑚} are used to update 𝝁𝑡+1
𝑖 , but the gradient of 𝝁𝑡

𝑖 remains 
dominant its own updates at the (𝑡 + 1)-th iteration, because 
𝑘(𝝁𝑡

𝑖,𝝁
𝑡
𝑖) = 1 ≥ 𝑘(𝝁𝑡

𝑖,𝝁
𝑡
𝑗 ),∀𝑗 ≠ 𝑖. Moreover, if 𝝁𝑡

𝑗 is closer to 𝝁𝑡
𝑖

than other centroids, ∇𝝁𝑡𝑗
𝐹 (𝜣) contributes more significantly to 

the update of 𝝁𝑡
𝑖, due to the sharing of more semantic information.

• Diversifying centroids. The second term in Eq. (4b) serves as a 
repulsive force to promote diversity among the centroids {𝝁𝑖}𝑚𝑖=1. 
We adopt the Radial Basis Function (RBF) kernel as a specific 
example of 𝜙(𝝁𝑡

𝑖) while noting that many other choices are ap-
plicable. The RBF kernel is expressed as:

𝑘(𝝁,𝝁′) = exp(−
‖𝝁 − 𝝁′

‖

2

2ℎ2
),

where ℎ denotes the bandwidth, typically set to the median of 
the distance between pairwise centroids. Therefore, the gradient 
of 𝑘(𝝁𝑡

𝑗 ,𝝁
𝑡
𝑖) to 𝝁𝑡

𝑗 in Eq. (4b) can be derived as: 

∇𝝁𝑡𝑗
𝑘(𝝁𝑡

𝑗 ,𝝁
𝑡
𝑖) = −

|𝝁𝑡
𝑗 − 𝝁𝑡

𝑖|

ℎ2
exp(−

‖𝝁𝑡
𝑗 − 𝝁𝑡

𝑖‖
2

2ℎ2
), (6)

which plays a crucial role in promoting diverse centroid learning. 
We refer to it as the diversity regularizer. Specifically, if the 
neighboring centroid 𝝁𝑡

𝑗 is closer to 𝝁𝑡
𝑖 at the 𝑡-the iteration, the 

gradient ∇𝝁𝑡𝑗
𝑘(𝝁𝑡

𝑗 ,𝝁
𝑡
𝑖) provided by 𝝁𝑡

𝑗 will be larger. Consequently, 
this larger gradient will push 𝝁𝑡

𝑖 and 𝝁𝑡
𝑗 away from each other at 

the (𝑡+1)-th iteration. In essence, the closer neighboring centroid 
significantly influences the update of 𝝁𝑡

𝑖. Ultimately, this process 
results in the diversification and uniform separation of all cluster 
centers within the latent space.

Metric of diversity. The diversity regularizer is incorporated into 
the gradient function in Eq (4b) for enhancing the diversity among 
cluster centroids. To provide a more intuitive insight into the degree 
of separation among centroids, we propose the following metric to 
quantify the diversity of centroids:

 = E𝑖≠𝑗𝑘(𝝁𝑖,𝝁𝑗 ) = E𝑖≠𝑗 exp(−
‖𝝁𝑖 − 𝝁𝑗‖

2

2ℎ2
),

where  represents the expectation of the kernel values across all pairs 
of centroids. A lower value of  indicates larger diversity and less 
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Fig. 6. DDGC vs. DDGC𝑘𝑚𝑒𝑎𝑛𝑠 on Cora. (a) DDGC exhibits lower similarity and greater 
diversity between cluster centroids compared to DDGC𝑘𝑚𝑒𝑎𝑛𝑠. (b) DDGC achieves better 
clustering performance in terms of ACC and NMI.

similarity among centroids. To empirically investigate the impact of di-
versifying centroids, we conduct comparative experiments between our 
model, DDGC, and its variant, DDGC𝑘𝑚𝑒𝑎𝑛𝑠, on the Cora dataset, which 
replaces the seeking-diverse-bellwethers (SDB) module with kmeans in 
DDGC. The clustering results are illustrated in Fig.  6. With the increase 
of epochs, the similarity/diversity among centroids in both DDGC and 
DDGC𝑘𝑚𝑒𝑎𝑛𝑠 decrease/increase gradually. However, the SDB module 
enables DDGC to achieve lower similarity scores, alongside higher 
ACC (Accuracy) and NMI (Normalized Mutual Information), which 
demonstrates our DDGC can learn more diversified centroids compared 
to DDGC𝑘𝑚𝑒𝑎𝑛𝑠, contributing to the improved clustering performance.

3.2. Sharpening clustering assignment

In this subsection, we introduce the Sharpening Clustering Assign-
ment (SCA) module to minimize intra-cluster variances. The Minimum 
Entropy (ME)-based clustering loss is proposed to replace the conven-
tional KL-based clustering loss, and its advantage will be explained by 
comparing these two losses. Furthermore, we compare the gradients 
of those two clustering losses to the clustering assignment distribution, 
which verifies theoretically the ME-based loss exhibits larger gradients, 
enabling the assignment distribution to be sharper.

3.2.1. Proposed ME-based clustering loss
The design of the clustering loss has always been a challenge for 

the unsupervised clustering task, because of the difficulty of designing 
self-supervised labels. In this paper, we propose a new method that get 
rid of the necessity of designing self-supervised labels. Our method em-
ploys minimum entropy as the clustering loss to sharpen the clustering 
assignment distribution. Specifically, to obtain the clustering assign-
ment distribution of each node, we utilize Student’s 𝑡-distribution to 
estimate the probability of node 𝑖 belonging to cluster 𝑗, via quantifying 
the normalized similarity between the node representation 𝐳𝑖 and the 
cluster centroid 𝝁𝑗 : 

𝑝𝑖𝑗 =
(1 + ‖𝐳𝑖 − 𝝁𝑗‖

2∕𝑎)−
𝑎+1
2

∑𝑚
𝑗=1(1 + ‖𝐳𝑖 − 𝝁𝑗‖

2∕𝑎)−
𝑎+1
2

, (7)

where 𝑚 is the number of clusters, 𝑎 denotes the degree of freedom of 
the Student’s 𝑡-distribution, which is set to 1 in experiments. Besides, 
𝑝𝑖𝑗 ∈ [0, 1] indicates the probability of assigning node 𝑖 to cluster 𝑗. 
For any node 𝑖, its assignment distribution can be represented by a 𝑚-
dimensional vector 𝐩𝑖 = [𝑝𝑖1,… , 𝑝𝑖𝑚]1×𝑚 with 

∑

𝑗 𝑝𝑖𝑗 = 1. The assignment 
distributions of all 𝑛 node can form the predicted assignment matrix, 
𝐏 = [𝐩1,… ,𝐩𝑛]𝑛×𝑚. Furthermore, our proposed ME-based clustering loss 
over the node assignment distribution can be formulated as follows: 

𝐿𝑒 = −1
𝑛

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑝𝑖𝑗 log 𝑝𝑖𝑗 . (8)

Minimizing the clustering loss 𝐿𝑒 can sharpen the node assignment 
distributions toward the one-hot distribution, thereby promoting the 
6 
compactness of clusters and clearer boundaries, ultimately enhancing 
clustering performance. To illustrate the advantage of our Minimum 
Entropy (ME)-based clustering loss, we will compare it with the con-
ventional KL-based clustering loss, which will be introduced in detail 
next.

Conventional KL-based clustering loss. The KL-based clustering 
loss commonly used in previous literature [24,25] is defined as the 
KL-divergence distance between the predicted assignment distribution 
𝐏 ∈ [0, 1]𝑛×𝑚 and the self-generated target distribution 𝐐 ∈ [0, 1]𝑛×𝑚

across all nodes, expressed as:

𝐿𝑘𝑙 = 𝐾𝐿(𝐏 ∥ 𝐐) = 1
𝑛

𝑛
∑

𝑖

𝑚
∑

𝑗
𝑞𝑖𝑗 log

𝑞𝑖𝑗
𝑝𝑖𝑗

, (9)

where 𝑞𝑖𝑗 =
𝑝2𝑖𝑗∕

∑

𝑖 𝑝𝑖𝑗
∑

𝑢(𝑝
2
𝑖𝑢∕

∑

𝑖 𝑝𝑖𝑢)
.

Here, the target probability 𝑞𝑖𝑗 is calculated by squaring and normal-
izing the predicted assignment probability 𝑝𝑖𝑗 , which serves as the 
pseudo-label to supervise the training of the graph encoder. Thus, 
the target distribution of node 𝑖, 𝐪𝑖 = [𝑞𝑖1,… , 𝑞𝑖𝑚]1×𝑚, is a peaker 
distribution, which forms the target assignment matrix of all nodes, 
𝐐 = [𝐪1,… ,𝐪𝑛]𝑛×𝑚. Minimizing the KL-based clustering loss in Eq. (9) 
enables the predicted assignment distribution 𝐩𝑖 approaching to the 
target distribution 𝐪𝑖 for any node 𝑖, which can effectively pull node 𝑖
to its centroids, and thus promote cluster compactness. Next, we derive 
the gradient of 𝐿𝑘𝑙 to the cluster centroid 𝝁𝑗 as follows:

∇𝝁𝑗𝐿𝑘𝑙 = − 𝑎 + 1
𝑎

∑

𝑖
(1 +

‖𝐳𝑖 − 𝝁𝑗‖
2

𝑎
)−1 × (𝑝𝑖𝑗 − 𝑞𝑖𝑗 )(𝐳𝑖 − 𝝁𝑗 ).

Since the target probability, 𝑞𝑖𝑗 acts as the pseudo-label, it is regarded 
as a constant at each epoch. The gradient ∇𝝁𝑗𝐿𝑘𝑙 includes an extra term 
(𝑝𝑖𝑗 − 𝑞𝑖𝑗 ), which implies that the optimization direction of the cluster 
center 𝝁𝑖 may be influenced by the pre-defined 𝑞𝑖𝑗 , may potentially 
leading to the learning of incorrect cluster centroids. Specifically, if the 
predicted assignment distribution 𝑝𝑖𝑗 is inaccurate, the manipulation 
of squaring 𝑝𝑖𝑗 can magnify the error, resulting in an suboptimal, 
even incorrect optimizing direction, such that the pseudo-label 𝑞𝑖𝑗 may 
misguide the training of centroids and graph model. But our ME-based 
loss does not rely on any self-generated target distribution, so it is more 
flexible to correct the error of 𝑝𝑖𝑗 , effectively addressing the limitation 
of the convention KL-based loss.

Remark 2 (The Conventional KL-based Clustering Loss Relies on the 
Pre-Defined Pseudo-Label, Potentially Leading to Suboptimal Centroid Op-
timization). Obviously, in Eq. (8), our ME-based clustering loss 𝐿𝑒
depends solely on the predicted assignment probability 𝑝𝑖𝑗 , thereby 
getting rid of requirement of designing pre-defined supervision. Next, 
we derive the gradient of the KL-based loss 𝐿𝑘𝑙 to the cluster centroid 
𝝁𝑗 as outlined below:

∇𝝁𝑗𝐿𝑘𝑙 = − 𝑎 + 1
𝑎

∑

𝑖
(1 +

‖𝐳𝑖 − 𝝁𝑗‖
2

𝑎
)−1 × (𝑝𝑖𝑗 − 𝑞𝑖𝑗 )(𝐳𝑖 − 𝝁𝑗 ).

where the target probability, 𝑞𝑖𝑗 , acting as the pseudo-label, is regarded 
as a constant at each epoch. The gradient ∇𝝁𝑗𝐿𝑘𝑙 can be updated 
by using feature-space embeddings {𝐳𝑖}𝑛𝑖=1. However, it also includes 
an extra term (𝑝𝑖𝑗 − 𝑞𝑖𝑗 ), indicating that the optimization direction of 
the cluster center 𝝁𝑖 can be influenced by the pre-defined 𝑝𝑖𝑗 , may 
potentially leading to the learning of incorrect cluster centroids.

3.2.2. A gradient comparison between the ME- and KL-based clustering loss
To further elucidate the superiority of our ME-based clustering 

loss, we conduct a theoretical comparison of the gradients of the ME- 
and KL-based clustering losses to the assignment probability. These 
gradients propagated through the chain rule, play a crucial role in 
updating the graph encoder. For simplicity, we take a clustering task 
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Fig. 7. The comparison of the gradients in ME- and KL-based clustering loss. Under 
any gradient, if 𝑝1 < 0.5, 𝑝1 will be updated toward 0; if 𝑝1 > 0.5, 𝑝1 will be updated 
toward 1. The gradient of ME ∇𝑝1𝐿

𝐩𝑖
𝑒  (solid red line) consistently exceeds that of KL 

∇𝑝1𝐿
𝐩𝑖
𝑘𝑙 (solid blue line). And 𝑝1 → {0, 1}, the gap (grey area) between two gradients 

widens, leading to a faster update of 𝑝1 toward 0∕1 with the gradient of ME-based loss 
.

with two clusters as an example. Let 𝐩𝑖 = [𝑝1, 1 − 𝑝1] denote the 
assignment distribution of node 𝑖. The ME-based clustering loss over 
𝐩𝑖 can be derived as: 

𝐿𝐩𝑖
𝑒 = −[𝑝1 log 𝑝1 + (1 − 𝑝1) log(1 − 𝑝1)], (10)

where 𝑝1 and (1 − 𝑝1) denotes the probabilities of assigning node 𝑖 to 
the cluster one and cluster two, respectively. Then, the gradient of 𝐿𝐩𝑖

𝑒
to 𝑝1 can be calculated as follows: 

∇𝑝1𝐿
𝐩𝑖
𝑒 = − log

𝑝1
1 − 𝑝1

, (11)

which is the function of only one variable 𝑝1. Next, we calculate the 
gradient of the KL-based clustering loss to 𝑝1. For a clustering task 
with two clusters, the KL-divergence clustering loss in Eq. (9), can be 
rewritten as,
𝐿𝐩𝑖
𝑘𝑙 = 𝑞1 log 𝑞1 + (1 − 𝑞1) log(1 − 𝑞1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

(12)

−𝑞1 log 𝑝1 − (1 − 𝑞1) log(1 − 𝑝1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

.

where 𝑞1 is the target probability of node 𝑖 belonging to cluster one, 
𝑞1 =

𝑝21
𝑝21+(1−𝑝1)

2
1. Due to serving as the pseudo-label of 𝑝1, 𝑞1 remains 

fixed and does not participate in the gradient back-propagation. Thus 
𝐿𝐩𝑖
𝑘𝑙 can be split into the sum of two terms, the constant and reduction 

term. Only the reduction term contains the variable 𝑝1, so it can be used 
to optimize model parameters. The gradient of 𝐿𝐩𝑖

𝑘𝑙 to 𝑝1 can be derived 
as: 

∇𝑝1𝐿
𝐩𝑖
𝑘𝑙 = −

𝑞1
𝑝1

+
1 − 𝑞1
1 − 𝑝1

=
1 − 2𝑝1

𝑝21 + (1 − 𝑝1)2
. (13)

These two gradients, 𝐿𝐩𝑖
𝑘𝑙 and 𝐿

𝐩𝑖
𝑒  to 𝑝1, are both the functions of 

the variable 𝑝1. Hence, we depict the two gradients2 in Eqs.  (11) 
and (13), as well as the functions of 𝐿𝐩𝑖

𝑒  and the reduction term of 
𝐿𝐩𝑖
𝑘𝑙 in Fig.  7. As observed, ∇𝑝1𝐿

𝐩𝑖
𝑘𝑙 has an upper bound: ∇𝑝1𝐿

𝐩𝑖
𝑘𝑙 ≤ 1

with lim𝑝1→0∕1 ∇𝑝1𝐿
𝐩𝑖
𝑘𝑙 = 1. In contrast, ∇𝑝1𝐿

𝐩𝑖
𝑒  has no bound, and 

lim𝑝1→0∕1 ∇𝑝1𝐿
𝐩𝑖
𝑒 = ∞. With 𝑝1 approaching 0∕1, the gradient of the 

1 In Eq. (9), both ∑𝑖 𝑝𝑖𝑗 and 
∑

𝑖 𝑝𝑖𝑢 in the numerator and denominator are 
the normalization terms, representing the sum of assignment probability within 
clusters, which is used to enforce balanced clustering assignment. As we focus 
on balance clustering, these two terms can be omitted in derivations.

2 In Fig.  7, the ‘‘log’’ in 𝐿𝑒, 𝐿𝑘𝑙, ∇𝑝1𝐿
𝐩𝑖
𝑒 , and ∇𝑝1𝐿

𝐩𝑖
𝑘𝑙 are based on 𝑒, i.e., ln, 

which is consistent with our source code.
7 
Fig. 8. DDGC vs. DDGC𝐾𝐿 on Cora. (a) DDGC produces more compact clusters than 
DDGC𝐾𝐿 because of the larger compactness metric across all epochs. (b) DDGC 
consistently outperforms DDGC𝐾𝐿 in terms of both ACC and NMI.

ME-based clustering loss significantly surpasses that of the KL-based 
clustering loss. Thus, ∇𝑝1𝐿

𝐩𝑖
𝑒  can push the assignment distribution of 

node 𝑖, [𝑝1, 1 − 𝑝1], closer to the one-hot distribution compared to 
∇𝑝1𝐿

𝐩𝑖
𝑘𝑙 , thereby verifying the advantage of sharpening the assignment 

distribution of our ME-based clustering loss. Therefore, our ME-based 
clustering loss can produce more compact clusters than the KL-based 
loss. To quantify the compactness of the cluster, we propose the follow-
ing metric to observe the differences between the clusters produced by 
those two losses.

Metric of Compactness. For the clustering task of 𝑚 clusters, we 
utilize the average maximum probability of each assignment distribu-
tion 𝐩𝑖 to measure the compactness of the clusters:

 = 1
𝑛

𝑛
∑

𝑖=1
𝑝∗𝑖 , where 𝑝∗𝑖 = max 𝐩𝑖

where 𝑝∗𝑖  represents the maximum probability of assigning node 𝑖 to 
clusters, indicating the confidence of the node belonging to its own 
centroid.  denotes the averaged assignment confidence over all nodes. 
A higher  signifies a lower distance from nodes to their own centroids 
and a higher compactness of clusters. To investigate the effectiveness 
of our ME-based loss, we conduct experiments to compare our model 
DDGC and its variant DDGC𝐾𝐿, which replaces ME with KL-divergence. 
As depicted in Fig.  8, with the increase of the training epochs, the 
compactness value of both ME- and KL-based clustering losses gradually 
increases. However, benefiting from the larger gradient, our ME-based 
loss with larger  can produce more compact clusters and achieve 
better clustering performance compared to the KL-based loss.

3.3. The whole framework

In this section, we demonstrate the framework of the proposed 
DDGC, which incorporates these two modules: Seeking Diverse Bell-
wethers (SDB) and Shapening Clustering Assignment (SCA), to jointly 
optimize node representations and clustering. The overall framework 
is illustrated in Fig.  5. The graph encoder takes the adjacency matrix 
𝐀 ∈ {0, 1}𝑛×𝑛 and the feature matrix 𝐗 ∈ R𝑛×𝑑0  as inputs to learn 
node representations {𝐳𝑖}𝑚𝑖=1. Based on the node representations, the 
SDB module maximizes the log-likelihood function to learn the diverse 
cluster centroids, {𝝁𝑖}𝑚𝑖=1, through gradient ascent, as described in 
Eq. (4a). Based on the centroids, the SCA module calculates the cluster-
ing assignment distribution of each node and our ME-based clustering 
loss, which is minimized together with the reconstruction loss to update 
the graph encoder via stochastic gradient descent.

Graph AutoEncoder. Following DAEGC [24], we adopt the graph 
attentional autoencoder to learn the node representations by minimiz-
ing the reconstruction loss. The encoder takes both the graph structure 
and node attributes as inputs, which outputs the representation 𝐳𝑙+1𝑖  at 
the 𝑙 layer by aggregating the neighbors 𝑖 of node 𝑖:

𝐳𝑙+1𝑖 = 𝜎(
∑

𝛽𝑖𝑗𝐖𝑙𝐳𝑙𝑗 ), (14)

𝑗∈𝑖
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where 𝛽𝑖𝑗 =
exp(𝛿𝑀𝑖𝑗 ( ⃖⃗ℎ𝑇 [𝐖𝑙𝐳𝑙𝑖 ∥ 𝐖𝑙𝐳𝑙𝑗 ]))

∑

𝑟∈N𝑖
exp(𝛿𝑀𝑖𝑟( ⃖⃗ℎ𝑇 [𝐖𝑙𝐳𝑙𝑖 ∥ 𝐖𝑙𝐳𝑙𝑟]))

where 𝜎 is a nonlinear function, 𝐖𝑙 denotes the network parameters 
of the 𝑙th layer, and 𝛽𝑖𝑗 is the attention coefficient indicating the 
importance of neighbor 𝑗 to node 𝑖. Additionally, 𝛿 is an activation 
function, and ⃖⃗ℎ ∈ R2𝑑 is a parameter vector. 𝑀 = (𝐵 + 𝐵2 +⋯ + 𝐵𝑡)∕𝑡
denotes a proximity matrix obtained by exploiting 𝑡-order neighbor 
nodes. Here 𝐵 is the transition matrix where 𝐵𝑖𝑗 = 1

𝑑𝑖
 if 𝑒𝑖𝑗 ∈  and 

𝐵𝑖𝑗 = 0 otherwise. The decoder we adopt is a simple inner product 
�̂�𝑖𝑗 = 𝜎(𝐳⊤𝑖 𝐳𝑗 ), which predicts the probability of an edge between node 
𝑖 and node 𝑗 and thus outputs the reconstructed adjacency matrix �̂�. 
In principle, we could use any form of graph encoder and decoder to 
compute the graph reconstruction loss.

Total Loss. The graph autoencoder can be optimized via minimizing 
the total loss, which comprises the proposed clustering loss and the 
reconstruction loss. The reconstruction loss of the graph autoencoder is 
defined as the difference between the reconstructed adjacency matrix 
�̂� and the given adjacency matrix 𝐀: 

𝐿𝑟 =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑙𝑜𝑠𝑠(𝐀𝑖,𝑗 , �̂�𝑖,𝑗 ). (15)

 The total loss can be computed by weighting the reconstruction loss 
𝐿𝑟 and the proposed ME-based clustering loss 𝐿𝑒: 
𝐿 = 𝐿𝑟 + 𝜂𝐿𝑒, (16)

where 𝜂 is a balance factor. To control the increasing impact of ME-
based loss on the total loss, we design a dynamic coefficient using a 
sigmoid-like function, 
𝜂(𝑡; 𝑎, 𝑏, 𝑐) = 𝑐

1 + 𝑒−𝑎𝑡+𝑏
, (17)

where 𝑡 represents the epoch number. 𝑎, 𝑏, and 𝑐 are hyperparameters to 
control the rate, initial weight, and amplitude, respectively. The curves 
of 𝜂 with different 𝑎 and 𝑏 values are illustrated in Fig.  13 in Appendix. 
Overall, with the increase of 𝑡, 𝜂 gradually grows regardless of the 
values of 𝑎 and 𝑏. Our method DDGC is summarized in Algorithm 1.

Our DDGC method mainly consists of two components: clustering 
and representation optimization.

• Clustering Optimization. Given the node representations
learned by the graph encoder, the seeking diverse bellwether 
(SDB) module performs the gradient ascent to maximize the log-
likelihood function in Eq. (4a) for obtaining the diverse cluster 
centroids in the inner loop.

• Representation Optimization. Based on the learned centroids, 
the Sharpening Clustering Assignment module (SCA) calculates 
the clustering assignment distributions of all nodes and the ME-
based clustering loss 𝐿𝑒. The total loss 𝐿, which weights the 
reconstruction loss and the ME-based clustering loss, is minimized 
to update the graph encoder and optimize node representations in 
the outer loop.

While minimizing the total loss 𝐿 to update the graph encoder and 
optimize node representations, we keep the cluster centroids fixed in 
the outer loop. Conversely, we keep the representations fixed while 
maximizing the log-likelihood function 𝐹 (𝐙|𝜣) for 𝑇  epochs in the 
inner loop to optimize the cluster centroids via the gradient ascent in 
Eq. (4a). Essentially, our framework decomposes the optimization of 
graph encoder and cluster centroids, facilitating a more efficient and 
stable training procedure. However, the conventional KL-based cluster-
ing loss is often minimized to optimize the node representations and 
cluster centroids simultaneously, where centroids are taken as model 
parameters to be updated with the graph encoder in the fine-tuning 
stage. This coupling of optimization into the same stage prevents these 
methods from finding the optimal solution. The Algorithm 1 outlines 
the complete process of our DDGC. We first minimize the reconstruction 
8 
Algorithm 1 Algorithm of our DDGC.
Input: Graph  = { ,  ,X} with the set of nodes  , the set of edges  and 
feature matrix X; 𝑚: number of clusters; 𝑇 : number of epochs for learning 
diverse centroids; 𝐾 ′ : number of epochs for pretraining representations; 
𝐾: number of epochs for minimizing the total loss; 𝑙: number of layers of 
graph encoder; {W𝑗}𝑙𝑗=1: the network parameters of 𝑙 layers; 𝛼: the diversity 
hyperparameter (Eq. (4b)); a, b, c: hyperparameters in adaptively balance 
coefficient (Eq.  (17)).
Output: The clustering results
for 0 ← 𝑘 to 𝐾 ′ − 1 do 
Update graph encoder {W𝑗}𝑙𝑗=1 by minimizing the reconstruction loss in 
Eq.  (15).

end for
for 𝐾 ′

← 𝑘 to 𝐾 do 
Learn node representations {z𝑖}𝑛𝑖=1 via the graph encoder. 
for 𝑡 = 1, 2,… , 𝑇  do 
Learn the diverse cluster centroids {𝝁𝑖}𝑚𝑖=1 by the gradient ascent 
Eq. (4a) and Eq. (4b)

end for
Calculate the clustering assignment distribution of each node based on 
the learned {z𝑖}𝑛𝑖=1 and {𝝁𝑖}𝑚𝑖=1 via Eq. (7). 
Calculate the reconstruction loss 𝐿𝑟 in Eq. (15) and the minimum 
entropy loss 𝐿𝑒 in Eq. (8), respectively. 
Update graph encoder {W𝑗}𝑙𝑗=1 by minimizing the total loss 𝐿 = 𝐿𝑟+𝜂𝐿𝑒.

end for
Predict the cluster according to the maximum probability in the node 
clustering assignment distribution 𝑠𝑖 = argmax𝑗 𝑝𝑖𝑗 . 
Evaluate the predicted clusters in terms of clustering metrics. 
Return the clustering results.

loss for 𝐾 ′ epochs for the pretrain graph encoder to encourage the 
encoder to explore better representations fully. Moreover, we also 
derive another version of DDGC without the pretraining stage for 𝐾 ′

epochs, enabling DDGC to train from scratch, called DDGC w/o pre.

3.4. Complexity analysis

In this subsection, we compare the proposed DDGC and state-of-
the-art Fine-tuning Methods in terms of model and time complexity. In 
general, DDGC has fewer model parameters and lower computational 
complexity than baselines. To simplify, we assume the dimension of 
the hidden embeddings is 𝑑 in all layers of the graph encoder, then the 
centroid dimension is 𝑑. The number of clusters is 𝑚. The number of 
edges is ||.

Model Complexity. Our DDGC has lower model parameters than 
the simplest fine-tuning method, DAEGC [24]. Specifically, DDGC 
adopts the same attentional Graph Autoencoder (GAE) as DAEGC 
to learn node representations. But in the fine-tuning stage, DAEGC 
takes the cluster centroids as the model parameters to be updated 
together with the graph encoder, which brings an additional 𝑂(𝑚𝑑)
of model complexity than our DDGC. Moreover, there are two more 
complex Fine-tuning Methods, DFCN [26] and DCRN [27]. The graph 
encoder adopted by them includes three modules: GAE, Improved GAE 
(IGAE), and a fusion module, which will obviously bring larger model 
complexity. This complex encoder also needs to be fine-tuned, which 
raises higher model complexity in the fine-tuning stage.

Time Complexity. For our DDGC, in the inner loop, the computa-
tional complexity of the SDB module is 𝑂(𝑇 𝑛𝑚𝑑2), where its dominant 
term, 𝑛𝑚𝑑2, arises from the computations of the multivariant Gaussian 
Mixture Model as described in Eq.(2) (its covariance matrix is an 
identity matrix with a diagonal of 1), and 𝑇  denotes the number 
of training epoch of inner loop. Therefore, the total computational 
complexity of our DDGC is 𝑂(𝐾||𝑑𝑘+(𝐾−𝐾 ′)𝑇 𝑛𝑚𝑑3), where 𝐾 denotes 
the number of the total epoch, the sum of the pretraining epoch 𝐾 ′ and 
fine-tuning epoch (𝐾 −𝐾 ′). Another dominant term, ||𝑑𝑘, arises from 
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Table 1
The statistics of datasets.
 Datasets #Node #Feature #Clusters #Links Density 
 Cora 2708 1433 7 5429 0.074% 
 Citeseer 3327 3703 6 4732 0.043% 
 DBLP 4058 334 4 7056 0.043% 
 ACM 3025 1870 3 26,256 0.287% 
 AMAP 7650 745 8 238,163 0.407% 

the attention-based graph encoder with 𝑘 attention head, it training is 
across the total training process.

For DAEGC, the computation cost of its graph encoder is the same 
as that of our DDGC, i.e., ||𝑑𝑘, since our DDGC follows the encoder 
of DAEGC. The computation cost of the Student-t distribution, 𝑂(𝑛𝑚𝑑), 
dominates the complexity of the clustering part of DAEGC. DAEGC pre-
trains the encoder for 𝐾 ′ epochs and fine-tunes the cluster centroids 
and encoder for (𝐾−𝐾 ′) epochs, leading to time complexity, 𝑂(𝐾||𝑑𝑘+
(𝐾 − 𝐾 ′)𝑛𝑚𝑑). For DFCN and DCRN, both use two components as 
encoder, i.e., Auto-Encoder and Improved Graph Auto-Encoder, and use 
deconvolution layers to reconstruct the node attributes and adjacency 
matrix. Compared with the simple Graph Auto-Encoder and inner-
product decoder in DDGC and DAEGC, they have clearly introduced 
more computational complexity. For the clustering part in fine-tuning 
stage, the dominant term 𝑂(𝑛2𝑑) of DFCN comes from the normalized 
self-correlation matrix (Eq.(8) in [26]). The dominant term 𝑂(𝑛3) of 
DCRN comes from two losses (Eqs.  (5) and (8) in [27]) that makes the 
cross-view feature correlation matrix equal to an identity matrix. There-
fore, the computational complexity of DFCN and DCRN are respectively 
𝑂(2𝐾||𝑑 + (𝐾 −𝐾 ′)𝑛2𝑑) and 𝑂(2𝐾||𝑑 + (𝐾 −𝐾 ′)𝑛3)

To sum up, we can find that: i) Compared to DAEGC, our DDGC 
has achieved comparative time complexity due the only induced linear 
complexity of 𝑇  and 𝑑2 with 𝑑 ≪ 𝑛 and 𝑇 ≪ 𝑛; ii) Obviously, DFCN 
and DCRN exhibit higher time complexity than our DDGC and DAEGC; 
iii) Scaling to large-scale datasets only induced linear time complexity 
compared to DAEGC. TBesides, to ensure the convergence of the log-
likelihood objective in the SDB module, we set the training epoch 𝑇  to 
300. However, 𝑇  can be further reduced in practical applications.

4. Experiments

In this section, we evaluate the clustering performance of the pro-
posed DDGC on five widely-used benchmark datasets. We compare 
our DDGC against 11 state-of-the-art (SOTA) methods to verify its 
superiority. Besides, we conduct an ablation study to demonstrate 
the effectiveness of each component and analyze the hyperparame-
ter sensitivity. Furthermore, we validate that DDGC can alleviate the
over-smoothing issue of the graph convolution network.

4.1. Benchmark datasets and baselines

To evaluate the effectiveness of the proposed DDGC model, we 
conducted extensive experiments on five widely-used benchmark graph 
datasets: Cora [24], Citeseer [28], DBLP3, ACM4, and AMAP [43]. Table 
1 summarizes the structural details of the five graph datasets, where the 
density is defined as the number of existing edges divided by the square 
of the number of nodes, indicating how sparse a graph is.

For a comprehensive evaluation, we compared DDGC with the 
state-of-the-art methods from three categories:

3 https://dblp.uni-trier.de
4 http://dl.acm.org/
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• Two-step methods design various graph autoencoders to learn 
unsupervised node representations. Subsequently, based on the 
learned representations, they employ the traditional clustering 
method, such as kmeans and spectral clustering to obtain the 
clustering results. The differences among these methods primar-
ily lie in the design of the graph autoencoder. These Two-step 
Methods mainly include GAE [28], VGAE [28], TADW [44], and 
ARGE [19], which design GAE, VGAE, DeepWalk, adversarially 
regularized (variational) graph autoencoder, respectively.

• Fine-tuning Methods including DAEGC [24],
AGCN [45], SDCN [25], DFCN [26], and DCRN [27], AGCC [46], 
jointly train the cluster centroids and graph encoder by mini-
mizing the KL-based clustering loss and the representation loss 
in the fine-tuning stage, where the cluster centroids are taken as 
model parameters to be updated via stochastic gradient descent. 
Before the fine-tuning stage, they all undergo a pretraining phase 
wherein the graph encoder and node representations are pre-
trained by minimizing an unsupervised loss, such as contrastive 
loss and the reconstruction loss. The differences among these 
methods exist in the design of the graph encoder and the design 
of additional modules. For instance, DAEGC [24] utilizes a graph 
attentional encoder to learn node representations. Both DFCN and 
DCRN adopt a complex graph encoder with three modules: GAE, 
IGAE, and the fusion module. Based on the complex encoder, 
DCRN designs a cluster- and node-level correlation reduction 
module.

• End-to-end methods. To verify the potential of diversifying the 
cluster centroids for improving graph clustering, we develop new 
versions of our DDGC and Fine-tuning Methods that omit the 
pretraining stage, which we refer to End-to-end Methods. These 
variants are denoted as DDGC w/o pre, DAEGC w/o pre, DFCN
w/o pre, and DCRN w/o pre, respectively, which are initialized 
randomly and trained from scratch. We use an abbreviation of 
‘‘w/o pre’’ to indicate removing the pretraining process from the 
training process. Moreover, DAGC [47], a deep attention-guided 
graph clustering with dual self-supervision, can be effectively 
trained in an end-to-end manner due to the proposed soft and 
hard self-supervision strategy. AGCC [46] is an end-to-end par-
allelly adaptive graph convolutional clustering model with two 
pathway networks to update the graph structure and extract the 
latent data features.

4.2. Experiment setup

We follow the experimental set-up of the baseline, DAEGC [24]), 
for a fair comparison, including the weight decay of 5 × 10−3, Adam 
optimizer, the 1-th layer with 256 dimensions and 2-th layer with 16
dimensions in graph convolution encoder, the 30 pretraining epochs 
and the 200 fine-tuning epochs; While additional hyperparameters are 
selected according to the model performance, especially that intro-
duced by our DDGC, including 𝑎, 𝑏 and 𝑐 in Eq. (17), as well as the 
epochs 𝑇  for training the inner loop in Algorithm 1. The sensitivity 
analysis of 𝑐 and the 𝛼 controlling the diversity regularization term in 
Eq. (4b) have been provided in Fig.  12. We set 𝑇 , 𝑎, and 𝑏 to 300, 1.5, 
and 0.0005, which are selected according to the model performance 
and their validation procedures are provided in Fig.  16 in Appendix 
C.2. We set ℎ to 

√

MED
2 log𝑁 , where MED is the median of the pairwise 

Euclidean distance between 𝑚 cluster centroids {𝝁𝑖}𝑚𝑖=1, i.e., MED()
with  = {‖𝝁𝑖 − 𝝁𝑗‖

2 ∣ 0 ≤ 𝑖, 𝑗 ≤ 𝑚}. Sensitivity analysis of ℎ can 
be found in Appendix  C.1. 𝐾 ′ is set to 0 in DDGC w/o pre. For our 
DDGC, we followed DAEGC [24] for data pre-processing and testing. 
During the training of the seeking diverse bellwethers module, only 
the centroids {𝝁𝑖}𝑚𝑖=1 are learned, while the covariance matrix 𝜮𝑖 of 
the underlying Gaussian mixtures is set as the identity matrix for com-
putational convenience. For DCRN [27], DAEGC [24], and DFCN [26] 

https://dblp.uni-trier.de
http://dl.acm.org/
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Table 2
Performance comparison on graph datasets w.r.t. ACC (%), NMI (%) and ARI (%). The bold values indicate the best results. ‘‘w/o pre’’ is an abbreviation for ‘‘without pretraining’’
 Datasets Cora Citeseer DBLP ACM AMAP

 Methods ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI  
 TADW 53.60±0.6 36.60±0.51 24.00±0.52 52.90±0.89 32.00±0.7 28.60±0.8 54.24±1.8 22.76±1.5 19.51±2.0 78.36±1.95 49.05±2.04 51.90±2.35 63.42±3.05 51.06±2.9 39.72±2.5  
 Two-step GAE 38.90±0.51 17.82±0.35 14.79±0.46 38.00±0.8 17.40±0.7 14.10±1.2 61.21±1.2 30.80±0.9 22.02±1.4 84.52±1.4 55.38±1.9 59.46±3.1 71.57±2.48 62.13±2.79 48.82±4.57   Methods VGAE 38.90±0.8 16.00±0.5 11.32±0.2 39.20±0.4 16.30±0.3 10.10±0.5 58.59±0.1 26.92±0.1 17.92±0.1 84.13±0.2 53.20±0.5 57.72±0.7 68.35±0.9 56.93±0.82 42.18±0.6  
 ARGE 64.00±1.0 44.90±0.8 35.20±0.68 57.30±1.2 35.00±0.72 34.10±0.6 59.22±1.0 23.16±0.5 22.35±0.45 86.29±2.36 56.21±1.98 63.37±1.5 69.28±1.7 58.36±1.43 44.18±0.88  
 SDCN 60.01±0.40 40.13±0.39 33.32±0.27 66.79±0.3 40.91±0.3 41.05±0.4 68.05±1.8 39.50±1.3 39.15±2.0 89.45±0.2 68.31±0.3 72.91±0.4 53.44±0.81 44.85±0.83 31.21±1.23   DAEGC 69.37±1.0 52.66±0.73 46.28±0.47 67.34±1.4 42.00±0.9 42.92±1.2 62.05±0.5 32.49±0.5 21.03±0.5 86.94±2.8 56.18±4.2 59.35±3.9 76.44±0.01 65.57±0.03 59.39±0.02   AGCN 67.94±0.9 50.74±0.78 45.01±0.5 68.79±1.0 41.54±0.7 43.79±0.74 73.26±1.2 39.68±0.5 42.49±0.63 90.59±1.0 68.38±0.66 74.20±0.85 75.89±0.9 68.62±0.7 57.56±0.67   Fine-tuning DFCN 68.95±0.81 51.34±0.41 45.54±0.48 69.50±0.2 43.90±0.2 45.50±0.3 76.00±0.8 43.70±1.0 47.00±1.5 90.60±0.2 72.90±0.4 69.40±0.4 76.88±0.8 69.21±1.0 58.98±0.84   Methods DCRN 69.39±0.60 52.96±0.35 46.45±0.49 70.76±0.18 45.04±0.35 45.72±0.30 78.03±0.25 47.45±0.44 52.64±0.46 90.76±0.2 68.27±0.61 75.45±0.52 79.91±0.13 73.64±0.24 61.35±0.20   DDGC(ours) 72.14±0.3 54.10±0.22 49.90±0.19 71.83±0.3 45.47±0.23 47.52±0.2 79.47±0.1 48.37±0.13 54.50±0.09 91.64±0.12 71.31±0.09 76.86±0.1 81.02±0.02 72.18±0.02 64.82±0.01 
 AGCC 67.56±3.1 49.83±2.5 44.37±1.82 68.08±3.9 40.86±2.4 41.82±2.2 73.45±3.7 40.36±2.65 44.40±2.1 90.38±4.12 68.34±3.4 73.73±3.98 78.82±4.77 72.85±3.48 60.81±3.23   DAGC 68.76±2.7 50.48±2.1 44.91±1.5 69.43±3.21 43.68±2.76 45.06±2.53 77.82±4.10 46.74±3.62 52.34±3.1 90.74±4.0 69.39±2.9 74.66±3.2 78.43±3.6 72.23±3.52 61.37±3.2  
 DAEGC w/o pre 54.65±8.5 43.88±7.5 35.34±4.74 46.93±5.72 27.07±4.36 23.53±3.98 54.55±7.36 24.60±4.0 24.87±3.2 87.93±10.2 62.04±8.3 67.52±6.8 56.78±6.3 55.92±5.28 42.62±4.32   End-to-end DFCN w/o pre 53.36±5.2 38.33±3.76 28.79±3.28 45.33±5.89 26.90±2.52 23.56±2.0 43.31±6.05 11.04±2.1 9.11±1.9 89.85±8.3 67.25±5.9 72.54±8.4 58.90±6.2 53.27±5.7 37.98±3.0  
 Methods DCRN w/o pre 50.92±6.9 33.28±4.58 22.90±3.9 57.80±7.3 29.20±2.5 28.35±2.1 46.14±3.2 16.18±1.5 13.16±1.6 88.94±4.9 64.16±3.2 69.96±2.92 58.12±3.15 54.32±2.89 43.09±3.0  
 DDGC w/o pre(ours) 69.32±4.0 52.74±3.1 46.37±2.5 70.18±3.8 44.34±1.91 45.46±2.0 78.36±3.1 47.75±2.7 53.31±2.6 91.37±2.98 70.56±2.42 76.20±2.0 80.33±2.62 70.91±2.1 63.77±1.91 
on Cora, we executed their official source code following the settings 
provided in their original literature and reported their average results. 
DDGC w/o pre, DAEGC w/o pre, DFCN w/o pre, and DCRN w/o pre
are initialized randomly and trained from scratch. For DFCN [26] on 
other datasets, we directly reported the corresponding values as listed 
in DCRN [27].

Metrics. Clustering results are obtained by assigning nodes to the 
cluster corresponding to the maximum value in the predicted assign-
ment distribution vector. We adopt the widely-used metrics to evaluate 
the clustering performance [14], Accuracy (ACC), Normalized Mutual 
Information (NMI), and Adjusted Rand Index (ARI). Higher values for 
all metrics indicate better clustering results. The best mapping between 
the predicted cluster-ID and the given class-ID was constructed using 
the Kuhn-Munkres [48].

4.3. Overall performance

To evaluate the clustering performance of the proposed DDGC, we 
conduct extensive experiments on five benchmark datasets, comparing 
DDGC against two categories comprising 11 baselines, including two-
step, and Fine-tuning Methods. Moreover, to verify the potential of 
diversifying centroids and sharpening assignment distribution, we com-
pare DDGC w/o pre with End-to-end methods, i.e., our adapted versions 
of baselines without pretraining, namely DAEGC w/o pre, DFCN w/o 
pre, and DCRN w/o pre. The comprehensive clustering performance is 
summarized in Table  2. We have the following observations:

• DDGC achieves state-of-the-art clustering performance on all 
datasets, which outperforms different methods, including the two-
step methods, and Fine-tuning Methods in terms of ACC, NMI, 
and ARI metrics. Among them, DFCN [26] and DCRN [27] are 
considered as the strongest deep clustering models. Specifically, 
compared to Two-step Methods including TADW [44], GAE [28], 
VGAE [28], and ARGE [19], DDGC consistently outperforms 
them by a considerable margin. We conjecture that lacking the 
mutual interaction of embedding learning and clustering train-
ing, Two-step Methods may suffer from the mismatch between 
two objectives and thus obtain inferior clustering performance 
compared to Fine-tuning Methods and DDGC. Moreover, our DDGC 
exhibits superior performance over Fine-tuning Methods due to 
incorporating mechanisms including diversifying cluster centroids 
in the SDB module and the sharper assignment distribution in the 
SCA module. Generally, the Fine-tuning Methods outperform the
Two-step Methods significantly, benefiting from the joint training 
of the cluster centroids and the node representations.

• DDGC w/o pre demonstrates significant superiority over the ex-
isting End-to-end methods, including AGCC and DAGC, and all de-
veloped End-to-end methods, including DAEGC w/o pre, DFCN w/o 
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pre, and DCRN w/o pre. Specifically, DDGC w/o pre significantly 
improves the best accuracy by 19.92%, 13.87%, 24.92%, 3.71%, 
and 21.52% on Cora, Citeseer, DBLP, ACM, and AMAP, respec-
tively. The mechanisms of diversity- and compactness-enhanced 
clustering not only elevate the clustering performance but also 
facilitate effective end-to-end training of DDGC. Besides, DFCN
w/o pre and DCRN w/o pre exhibit notably inferior performance 
compared to DAEGC w/o pre on Cora, DBLP, and ACM. That is 
because the complex graph encoder adopted by DFCN [26] and 
DCRN [27] includes three modules comprising GAE, IGAE, and 
its fusion module to learn node representations, which is hard to 
be trained from scratch together with the cluster centroids. That 
means DFCN and DCRN are unsuitable for training from scratch.

• The following evidence can verify that DDGC has significantly 
reduced the reliance on pre-training: (i) when removing the pre-
training stage, the clustering performance (ACC, NMI, ARI) of 
baselines, i.e., DAEGC w/o pre, DFCN w/o pre, DCRN w/o pre, 
has significantly decreased. However, the clustering performance 
of DDGC w/o pre is very close to those of our DDGC (with pre-
training); (ii) compared with baselines including DAEGC, DFCN, 
and DCRN, our DDGC w/o pre, even skipping the pre-training 
phase, still achieves comparable clustering performance on Cora 
and Citeseer datasets, and superior performance on DBLP, ACM 
and AMAP datasets; (iii) compared with all baselines without pre-
training (DAEGC w/o pre, DFCN w/o pre, DCRN w/o pre), DDGC
w/o pre significantly outperform their clustering performance, in 
terms of all metrics, i.e., ACC, NMI, ARI. More experiments are 
provided in Appendix  E.

4.4. Ablation analysis

To further investigate effectiveness of each component in DDGC, 
we develop three distinct variants of DDGC: DDGC𝐾𝐿, DDGC𝑘𝑚𝑒𝑎𝑛𝑠, 
and DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿 by substituting the proposed Minimum Entropy 
(ME)-based clustering loss with the conventional KL-based loss, substi-
tuting the seeking-diverse-bellwethers (SDB) module with the classical 
kmeans algorithm, and employing both the KL-based loss and kmeans, 
respectively. We conduct the ablation study by comparing DDGC with 
these three variants on five datasets, and their clustering results are 
presented in Table  3.

As observed, we can demonstrate several key insights: (1) DDGC 
consistently outperforms DDGC𝐾𝐿 with an average accuracy margin 
of 1.2% across all datasets, affirming the effectiveness of our ME-
based clustering loss in enhancing the clustering performance; (2) 
Compared with DDGC𝑘𝑚𝑒𝑎𝑛𝑠, DDGC achieves an average accuracy gain 
of 1.8% across all dataset, which demonstrates the effectiveness of the 
diversifying cluster centroids in the seeking-diverse-bellwethers (SDB) 
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Table 3
Ablation study w.r.t. ACC (%), NMI (%) and ARI (%).
 Methods DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿 DDGC𝐾𝐿 DDGC𝑘𝑚𝑒𝑎𝑛𝑠 DDGC

 Datasets ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI  
 Cora 67.76 49.24 45.64 69.76 49.17 45.66 68.87 50.32 45.43 72.14 54.10 49.90 
 Citeseer 69.70 43.20 45.26 70.06 45.22 43.73 70.09 43.42 45.76 71.83 45.47 47.52 
 DBLP 75.06 43.14 45.68 75.67 43.30 46.72 77.57 46.99 47.86 79.47 48.37 54.50 
 ACM 86.08 60.69 64.49 88.56 64.71 69.52 90.71 69.72 74.66 91.64 71.31 76.86 
 AMAP 75.23 58.76 53.49 79.45 65.46 61.40 77.25 65.81 56.55 81.02 72.18 64.82 
Fig. 9. Clustering visualization for the Citeseer dataset. The grey dots denote the 
learned centroid of each cluster.

module; (3) The SDB module exhibits a more pronounced impact on 
the clustering results compared to the ME-based clustering loss. This is 
evidenced by DDGC𝐾𝐿 outperforming DDGC𝑘𝑚𝑒𝑎𝑛𝑠 across all datasets 
in terms of ACC, NMI, and ARI metrics; (4) DDGC demonstrates a 
larger accuracy increase, averaging 3.5%, over five datasets compared 
to DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿. This suggests that simultaneously incorporating the 
SDB module and ME-based clustering loss into our framework further 
enhances clustering performance by promoting the compactness and 
diversity of clusters. Furthermore, based on the baseline, DAEGC, we 
develop other variants to verify the effectiveness of the SDB module and 
the ME-based clustering loss, such as DAEGC𝑀𝐸 that replaces the KL-
based loss with our ME loss. The results of these variants are presented 
in Appendix.

4.5. Cluster visualization

To visually assess the effect of the diverse cluster centroids and 
the sharpening assignment distribution in DDGC, we conduct t-SNE 
visualization for the above three variants, including DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿, 
DDGC𝐾𝐿, and DDGC𝑘𝑚𝑒𝑎𝑛𝑠 on the Citeseer dataset. Fig.  9 visualizes 
the node representations learned by DDGC and these three variants, 
which are projected into a two-dimensional space using the t-SNE 
algorithm [49]. As indicated in Table  1, the Citeseer dataset comprises 
6 clusters. Different colors represent the classes of nodes, and the black 
dots denote the cluster centroids.

The visualized clustering results reveal several key findings: (1) In 
Fig.  9(b) and (d), the cluster centroids, learned by DDGC𝐾𝐿 and DDGC, 
appear as pentagrams, evenly distributed in space, but the cluster 
centroids in Fig.  9(a) and (c) do not exhibit the nonuniform pattern. 
This is the evidence that the diversity regularizer in the gradient 
11 
Fig. 10. Comparison of the baseline DAEGC and DDGC performance (ACC (%), NMI 
(%)) with different pretraining epochs on Cora and ACM datasets. Best viewed in color.

function, Eq. (4b), effectively enables the SDB module to learn diverse 
cluster centroids; (2) Fig.  9(c) and (d) demonstrate that the clusters 
learned by both DDGC𝑘𝑚𝑒𝑎𝑛𝑠 and DDGC are more compact compared 
to DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿 and DDGC𝐾𝐿. This compactness arises because the 
ME-based clustering loss facilitates the clustering assignment distri-
bution of each node to approach a one-hot distribution, resulting in 
more compact clusters than those achieved with the conventional KL-
based loss; (3) Notably, DDGC in Fig.  9(d) presents well-separated, 
diverse and compact clusters compared to DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿 in Fig.  9(a). 
Its improvement can be attributed to the seeking diverse bellwether 
module and the sharpening assignment mechanism in DDGC. These 
components enable DDGC to learn diversified centroids and compact 
clusters, leading to learning discriminative node representations and 
stabilizing the training process.

4.6. Analysis of stability to pretraining

To further demonstrate the stability of DDGC with respect to pre-
training, we compared it with the baseline DAEGC [24], as they utilize 
the same attentional autoencoder. We vary the number of pretraining 
epochs within {5, 10, 20, 30} on Cora and report the fine-tuning results 
in Fig.  10. It is evident from the results that our DDGC consistently 
outperforms DAEGC across all pretraining epochs and mitigates the 
dependence on the well-pretrained encoder.

From the observations depicted in Fig.  10, we can draw the follow-
ing conclusions: (1) The baseline DAEGC demonstrates high sensitivity 
to the quality of the pretraining encoder, as its clustering performance 
significantly decreases when the number of pretraining epochs is re-
duced on Cora and ACM datasets. That is because the minimize the 
KL-based clustering loss and the reconstruction loss to simultaneously 
train the cluster centroids and the graph encoder, where the centroids 
are taken as the parameters, limiting the exploration of representation 
space; (2) In contrast, our method DDGC performs stably and robustly 
over accuracy and NMI, regardless of the variations in the pretraining 
encoder. DDGC consistently achieves an accuracy of approximately 
71% and an NMI of 54% on Cora, as well as an accuracy of approx-
imately 91.5% and an NMI of 71.5% on the ACM dataset across all 
pretraining epochs. The experimental results confirm the effectiveness 
of the diverse centroids and sharpening assignment mechanism. Our 
framework of DDGC decomposes the optimization of centroids and 
graph encoder, leading to better clustering performance.
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Fig. 11. Trained our DDGC and DAEGC on Cora dataset using the same pre-trained 
GAE encoder of 30 epochs, showing two different measures for increasing number of 
layers ranging from 2 to 7: (left) Dirichlet energy of the layer-wise node features, 
(right) Mean Average Distance (MAD).

Fig. 12. Clustering accuracy (%) vs. hyperparameters 𝛼 and 𝑐 on Cora dataset.

4.7. Studies on alleviating the over-smoothing problem

We conduct experiments to validate that our DDGC model can 
alleviate the over-smoothing issue to some extent. The over-smoothing
problem refers to the significant deterioration in clustering perfor-
mance as the number of layers in GNNs increases. Its occurrence 
can be verified in Fig.  14. We compare two over-smoothing metrics,
i.e., Dirichlet energy and Mean Average Distance (MAD) (we introduce 
them in Appendix  B.2), of our DDGC and the baseline DAEGC [24] 
by increasing the depth of graph attentional autoencoder from 2 to 7
layers.

Fig.  11 displays these two metrics of DAEGC [24] and DDGC as 
the number of layers in graph encoder increases. The experimental 
findings highlight the following insights: (1) DAEGC exhibits a gradual 
decline in Dirichlet energy and MAD as the number of layers increases, 
indicating suffering from over-smoothing ; (2) In contrast to that, DDGC 
alleviates the issue of over-smoothing by keeping the layer-wise Dirichlet 
energy and MAD approximately constant, showcasing its ability to 
learn discriminative node representations by separating and condensing 
clusters.

4.8. Hyperparameter analysis

We investigate the influence of hyperparameters 𝛼 in Eq. (4b) and 
the amplitude 𝑐 in Eq. (17). The 𝛼 plays a pivotal role in balancing the 
term of fitting node representations and the diversity regularizer for 
diversifying the cluster centroids. The amplitude 𝑐 is more important 
to influence the value of the balance factor 𝜂, where 𝑎 and 𝑏 are set 
to 1.5 and 0.0005, respectively. We conduct experiments to show the 
effect of these two parameters on Cora datasets.

From the results illustrated in Fig.  12, it can be observed that 
DDGC is insensitive to hyperparameter 𝑐. The accuracy metric has 
slight increments with the increasing value 𝑐. Notably, the clustering 
performance of our DDGC fluctuates regarding the hyperparameter 𝛼
with DDGC achieving its highest accuracy when 𝛼 is set to 0.96.
12 
Fig. 13. Comparison of centroids and bellwethers. Three colored circles represent 
nodes of three clusters. The red arrow indicates the diversifying centroids of SDB. The 
dashed arrow denotes the bellwether role of centroids in SCA, which pulls intra-cluster 
nodes to move toward their own centroids.

5. Conclusion

Most existing deep graph clustering models struggle to achieve op-
timal performance due to their cluster-friendly representation learning 
and insufficient support for learning diversified clusters. To address 
their limitations, we proposed the Diversity-promoting Deep Graph 
Clustering framework (DDGC). DDGC embodies two crucial principles 
in clustering: minimizing the intra-cluster variance and maximizing the 
inter-cluster variance. We introduce a diversity term into the process 
of centroids learning, enabling DDGC to learn diverse cluster centroids 
and enhance node discrimination. Additionally, our proposed sharp-
ening clustering assignment mechanism embedded in our ME-based 
clustering loss further consolidates clusters. These techniques enable 
stable training of DDGC from scratch but also significantly improve 
clustering performance. DDGC exhibits remarkable improvement in 
performance and robustness compared to state-of-the-art models.
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Appendix A. Difference between centroids and bellwethers

We clarify two meanings of ‘‘bellwethers’’: (i) the means of node 
features within clusters, (ii) leading the update of latent node features 
within clusters, facilitated by a diversity regularization term in Eq. (4b). 
Finally, we can obtain well-separate clusters with wider cluster bound-
aries. Fig.  13(b) illustrates the dynamic process of our ‘‘bellwethers’’ 
leading representation learning. The traditional ‘‘centroids’’ are only 
the centers of clusters, corresponding to the first meaning, shown in 
Fig.  13(a).
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Fig. 14. Comparison of DAEGC and DDGC performance (ACC (%), NMI) with varying 
the depth of graph encoder on Cora dataset. DDGC boosts overall performance by 
facilitating increased diversity with the addition of layers. Best viewed in color.

Appendix B. Over-smoothing

B.1. Over-smoothing on graph clustering

Some graph smoothing improves performance before
oversmoothing occurs, while too much smoothing inevitably leads 
to oversmoothing [50]. Oversmoothing hence makes the node features 
lose information for distinguishing nodes quickly when the layer size 
goes to infinity. The goal of graph clustering is to partition nodes into 
distinct clusters, ensuring that nodes within clusters are more similar 
than those between clusters. The reduction in node discrimination 
caused by the over-smoothing problem results in the DAEGC and DDGC 
models producing clustering-unfriendly representations, which hinder 
the ability to distinguish groups in the clustering task, thereby signifi-
cantly impairing model performance. Fig.  14 illustrates that DDGC and 
DAEGC suffered from the over-smoothing issue.

B.2. Dirichlet energy and mean average distance

Besides, to further verify the mitigating over-smoothing of our DDGC, 
we introduce two additional metrics, Dirichlet energy and Mean Average 
Distance. Existing approaches [51–53] to measure over-smoothing in 
deep GNNs have mainly been based on the concept of Dirichlet energy
on graphs, 

(𝐙𝑛) = 1
||

∑
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∑
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2
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where 𝐙𝑛 is the learned node embeddings of all nodes at the 𝑛th layer, 
and 𝑖 denotes the neighbors set of the node 𝑖. Besides, Mean Average 
Distance (MAD) is also an additional evaluation metric to measure over-
smoothing broadly used in a variety of existing approaches [54,55]: 
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Both metrics measure the distance in representations between nodes 
and their neighbors. We conduct the following experiments to compare
Dirichlet energy and MAD of our DDGC and the baseline with increasing 
layers. Fig.  11 in Section 4.7 has demonstrated that our DDGC indeed 
mitigates the over-smoothing problem compared to DAEGC.
13 
Fig. 15. Comparison of different bandwidths of our RBF kernel 𝑘(𝝁𝑖 ,𝝁𝑗 ) = exp(−
𝐷2

𝑖𝑗

2ℎ2 )
with 𝐷𝑖𝑗 = ‖𝝁𝑖−𝝁𝑗‖. (a) ℎ = 1 vs. ℎ = 2. (b) Changed ℎ across iterations: the accuracy 
(ACC) performance and the centroid similarity of DDGC with increasing 𝜌 from 0.4 to 
1.2 (we use 𝜌 ⋅MED(𝐷) replace MED(𝐷) in ℎ). (c) Constant ℎ across iterations: the 
ACC performance with increasing constant ℎ from 1.2 to 5.2. In Fig.  15(b) and (c), 
the green and yellow shadows respectively denote the small and large ℎ. The red and 
blue Stars denote the clustering results of our ℎ: for Fig.  15(b), 𝜌 = 1; for Fig.  15(c), 
our ℎ is averaged approximately at 4.7 over all iterations.

Appendix C. Analysis of hyperparameters

C.1. Analysis of ℎ in RBF kernel

The institution of ℎ is that it can normalize the Euclidean distance 
such that the sum of the kernel values of a query centroid 𝝁𝑖 is 
1, i.e., ∑𝑚

𝑗=1 𝑘(𝝁𝑖,𝝁𝑗 ) ≈ 𝑁 exp(− 1
ℎ2
MED2) = 1, where 𝑘(𝝁𝑖,𝝁𝑗 ) =

exp(− ‖𝝁𝑖−𝝁𝑗‖2

2ℎ2 ) is our adopted RBF kernel. That can ensure that our ker-
nel is normalized and ranges from 0 (in the infinite-distance limit) to 1
(when 𝝁𝑖 = 𝝁𝑗). Note that in this way, the bandwidth ℎ actually changes 
adaptively across the iterations. Fig.  15(a) illustrates the difference of 
kernel functions with different ℎ sizes. The right value of ℎ is important to 
decide which centroids should be considered similar. Too-large ℎ makes the 
influence of the kernel span a larger area, making centroids far apart 
assigned the non-negligible or high similarity. Too-small ℎ makes the 
influence of the kerne more localized around the query centroid 𝝁𝑖, 
assigning higher similarity only to close centroids. In the following, we 
will conduct experiments to analyze the effect of bandwidth ℎ on model 
performance.

Influence on model performance. To analyze the influence of ℎ
on our DDGC method, we develop two types of ℎ as variants: with 
epoch increasing (i) adaptively changing and (ii) remaining constant 
ℎ. For (i), we replace MED of our ℎ by 𝜌 ⋅ MED, i.e., 

√

𝜌⋅MED
2 log𝑁 , with 

𝜌 ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2}. The ℎ variants of 𝜌 > 1 (resp. 
𝜌 < 1) are large (resp. small) ℎ. For (ii), we pre-fix constant ℎ with 
ℎ ∈ {1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2}, where the variants are 
considered as large (resp. small]) ℎ if ℎ > 4.7 (resp. ℎ < 4.7) (because 
the ℎ of our MED is averaged at 4.7 across all iterations). We evaluate 
our ℎ and those variants by the clustering accuracy (ACC) performance 
and the metric of centroid diversity (or similarity) of our paper.

From Fig.  15, we can summarize the following conclusions: (i) For 
Fig.  15(a), when 𝜌 < 1, as 𝜌 increases the ACC performance of 𝜌 ⋅MED
has been improved steadily due to the decreasing similarity among 
centroids. Conversely, when 𝜌 > 1, with increasing 𝜌 the ACC has been 
decreasing due to the increasing similarity among centroids. Fig.  15 
exhibits a similar pattern. (ii) In both Fig.  15(b) and (c), our ℎ with 
MED has achieved better accuracy (ACC) (red Stars), compared to 
other ℎ variants, including 𝜌 ⋅ MED and fixed constants, which has 
verified that too-large or small bandwidth ℎ can adversely affect the 
model clustering performance. That is because our ℎ in our kernel has 
made DDGC learn more diverse cluster centroids (blue Stars) with 
fewer similarities than other variants ℎ.
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Fig. 16. The clustering accuracy (%) of DDGC with different 𝑇 , 𝑎 and 𝑏.

Fig. 17. Left: Selection process for the optimal sub-range within the broader range 
[0.1, 1.1] for hyperparameter 𝛼; Right: Local search for the optimal value within the 
sub-range.

Fig. 18. The comparison of 𝜂 with different 𝑎 and 𝑏. (a) Fixing 𝑏, the larger 𝑎 is, the 
faster the weight of the entropy regularization increases and vice versa. (b) Fixing 𝑎, 
the larger 𝑏 is, the larger the weight of the regularization is, and vice versa.

C.2. Analysis of 𝑇 , 𝑎 and 𝑏

In hyperparameter settings, we set the 𝑇 , 𝑎, and 𝑏 to 300, 1.5, and 
0.0005, which are selected by the following sensitivity analysis and 
validation procedures in Fig.  16.

C.3. Analysis of diversity coefficient 𝛼

We have demonstrated the process of selecting the range for hy-
perparameters 𝑎. Specifically, we first identified the optimal sub-range 
for 𝑎 as [0.9, 1] by searching within the broader range [0.1, 1.1], as 
illustrated in Fig.  17(a). Then we locally searched in the sub-range 
[0.92, 1] and found the optimal value as 0.96 in Fig.  17(b).

Appendix D. Analysis of dynamic coefficient

Specifically, 𝑐 is the upper bound of the balance weight. Specifically, 
taking 𝑐 = 10 as an example, Fig.  18(a) shows the curves of 𝜂(𝑡; 𝑎, 𝑏 =
3) = 10

1+𝑒−𝑎𝑡+3  with only varying 𝑎 and fixing 𝑏 = 3. We find that varying 
𝑎 only changes the rate at which the entropy regularization merges in 
the total loss, but the initial weight remains unchanged 10

1+𝑒3 . Fig.  18(b) 
shows the curves of 𝜂(𝑡; 𝑎, 𝑏 = 3) = 10

1+𝑒−0.1𝑡+𝑏  with only varying 𝑏 and 
fixing 𝑎 = 0.1. We find that varying 𝑏 only changes the initial weight, 
but the rate remains unchanged, i.e., all curves have the same gradient 
∇ 𝜂 = 0.1𝑒−0.1𝑡. That is why we call 𝑎 the rate and 𝑏 the initial weight.
𝑡

14 
Fig. 19. The performance of different methods w.r.t. iteration on Cora and Citeseer. 
Both DAEGC and DDGC use the same AGE parameters and centroids from the 10th 
iteration of the pretraining as the initialization settings. The pretraining results at 10th 
iteration are marked with a bold purple cross.

Appendix E. Additional analysis of stability

In Fig.  19, we visualize the performance (ACC and NMI) of our 
DDGC (refer to DDGC+𝑃  and DAEGC both initialized by the same pre-
trained encoder at 10 pretrained epoch in Fig.  19, where the bold purple 
cross is the training curve of pretraining autoencoder for 100 epoch. The 
results show that: (1) DAEGC yields inferior clustering performance, 
given the inadequately trained node representations. It only slightly 
improves the clustering performance produced by autoencoder at 10th 
epoch (labeled as a bold purple cross); (2) DDGC achieves a superior 
performance despite the sub-optimal initial node presentations. This 
is evident that DDGC can mitigate the reliance on the well-pretrained 
encoder.

Appendix F. Additional ablation analysis

To provide a more detailed analysis regarding the effectiveness of 
different components in different models, we developed DAEGC_ME, 
a variant of DAEGC, by replacing the KL divergence regularizer in 
DAEGC with the minimum entropy, and developed DDGC_KL by using 
KL divergence as the regularizer in DDGC. The results illustrated in 
Fig.  20 demonstrate that: (1) DDGC presents the most stable training 
curve and converges faster. It clearly performs better than DDGC_KL, 
which suffers severe fluctuations. We conclude that minimum entropy 
fits better in the DDGC framework than KL divergence, as DDGC 
is more likely to learn task-friendly representations for the graph 
clustering, which helps to avoid the model collapse, due to the use 
of a diversity centroids learning module. Therefore, DDGC performs 
better with a more confident clustering assignment mechanism. In 
comparison with KL divergence, minimum entropy provides a one-
hot-like assignment, which contributes to stable learning. (2) DAEGC 
and DAEGC_ME present inferior performance than DDGC. However, 
KL divergence fits better in the DAEGC framework, as KL divergence 
offers a softer clustering assignment than minimum entropy, having 
more chances to adjust the optimization direction needed in DAEGC.

Data availability

Data will be made available on request.
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Fig. 20. The performance of DAEGC and DDGC with KL divergence or entropy module 
w.r.t. iteration on Cora and Citeseer.
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