
Knowledge-Based Systems 317 (2025) 113322

A
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Sharpening deep graph clustering via diverse bellwethers
Peiyao Zhao a , Xin Li a ,∗, Yuangang Pan b ,∗, Ivor W. Tsang b, Mingzhong Wang c ,
Lejian Liao a
a Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, China
b Agency for Science, Technology and Research (A*STAR), Singapore
c University of the Sunshine Coast, Sunshine Coast, Australia

A R T I C L E I N F O

Keywords:
Deep graph clustering
Diverse cluster centroids
Sharpening clustering assignment
Discriminative node representations

 A B S T R A C T

Deep graph clustering has attracted increasing attention in data analysis recently, which leverages the topology
structure and attributes of graph to divide nodes into different groups. Most existing deep graph clustering
models, however, have compromised performance due to a lack of discriminative representation learning and
adequate support for learning diverse clusters. To address these issues, we proposed a Diversity-promoting
Deep Graph Clustering (DDGC) model that attains the two essential clustering principles of minimizing the
intra-cluster variance while maximizing the inter-cluster variance. Specifically, DDGC iteratively optimizes the
node representations and cluster centroids. First, DDGC maximizes the log-likelihood of node representations
to obtain cluster centroids, which are subjected to a differentiable diversity regularization term to force the
separation among clusters and thus increase inter-cluster variances. Moreover, a minimum entropy-based
clustering loss is proposed to sharpen the clustering assignment distributions in order to produce compact
clusters, thereby reducing intra-cluster variances. Extensive experimental results demonstrate that DDGC
achieves state-of-the-art clustering performance and verifies the effectiveness of each component on common
real-world datasets. Experiments also verify that DDGC can learn discriminative node representations and
alleviate the over-smoothing issue.
1. Introduction

Graph clustering, a fundamental technique in data analysis, aims
to partition all nodes within a graph into 𝑘 distinct clusters. Ideally,
nodes within the same cluster have more similar topological features
and attribute values than nodes in other clusters. Typical applications
of graph clustering include community detection [1–3], group segmen-
tation [4–6], image segmentation [7–10], domain adaptation [11–13].
The conventional graph clustering algorithms [14,15] have demon-
strated their effectiveness in grouping nodes based on well-defined
handcrafted features and well-established similarities. However, their
effectiveness heavily relies on the feature selection and the initial
centroid assignment. Recently, ‘‘deep graph clustering’’ has emerged
as a promising approach by incorporates deep learning frameworks,
such as Deep Neural Networks (DNN) [16], Graph Neural Networks
(GNN) [5,17,18], with the conventional clustering algorithms. This
fusion aims to transform graph data from an original complex structure
space to a low-dimensional feature space to effectively facilitate the
task.

∗ Corresponding authors.
E-mail addresses: peiyaozhao@bit.edu.cn (P. Zhao), xinli@bit.edu.cn (X. Li), pan_yuangang@cfar.a-star.edu.sg (Y. Pan), ivor_tsang@cfar.a-star.edu.sg

(I.W. Tsang), mwang@usc.edu.au (M. Wang), liaolj@bit.edu.cn (L. Liao).

Most existing deep graph clustering algorithms are Two-step Meth-
ods [15,19,20], including (1) first pretrain a graph encoder to obtain
low-dimensional node representations via minimizing an unsupervised
or self-supervised graph representation learning loss, such as the recon-
struction loss or contrastive learning loss [21], and then (2) performing
conventional clustering algorithms like 𝑘-means [15,22] or spectral
clustering [14,23] on the learned node representations to obtain the
clustering results. Although these algorithms have achieved attractive
clustering performance, an emerging challenge lies in the fact that
the node representations learned by the first step are not dedicatedly
designed or tailored for clustering tasks in the second step, leading to
sub-optimal clustering results.

To bridge these two steps, after pretraining an encoder and clus-
ter centroids like Two-step methods, DAEGC [24] first introduces a
fine-tuning stage to simultaneously training node representations and
centroids by minimizing a Kullback–Leibler (KL) clustering loss. Recent
studies mainly focus on designing clustering loss without relying any
labels [25] and resorting to advanced techniques to develop effective
https://doi.org/10.1016/j.knosys.2025.113322
Received 27 April 2024; Received in revised form 17 October 2024; Accepted 7 Ma
vailable online 31 March 2025
950-7051/© 2025 Published by Elsevier B.V.
rch 2025

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
https://orcid.org/0000-0002-0396-2155
https://orcid.org/0000-0003-4257-4347
https://orcid.org/0000-0002-7950-4900
https://orcid.org/0000-0002-6533-8104
mailto:peiyaozhao@bit.edu.cn
mailto:xinli@bit.edu.cn
mailto:pan_yuangang@cfar.a-star.edu.sg
mailto:ivor_tsang@cfar.a-star.edu.sg
mailto:mwang@usc.edu.au
mailto:liaolj@bit.edu.cn
https://doi.org/10.1016/j.knosys.2025.113322
https://doi.org/10.1016/j.knosys.2025.113322

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
Fig. 1. The clustering accuracy (ACC) and reconstruction loss of GAE in the pretraining
process on the Cora dataset. With the convergence of the loss curve, the accuracy
of GAE exhibits persistent oscillations, failing to converge, thus struggling to yield
clustering-friendly node representations.

graph encoder [26,27], which can enable models capture more se-
mantic information for benefiting representation learning to facilitate
better clusters. However, all those methods typically treat centroids as
parameters and fine-tune them with graph encoder via minimizing a
KL-based clustering loss in the fine-tuning stage. We refer to this type
of methods as Fine-tuning Methods. The detailed comparison is shown in
Fig. 4. In fact, both Two-step Methods and Fine-tuning Methods typically
rely heavily on an well-pretrained graph encoder to start up the graph
clustering task.

Although Fine-tuning Methods have achieved promising results, our
analysis still reveal significant limitations of the widely-used graph
encoder, GAE, and the associated KL-divergence clustering loss in
the Fine-tuning Methods. Specifically, even a well-pretrained encoder,
e.g., GAE, fails to yield clustering-friendly node representations. As
depicted in Fig. 1, the accuracy (ACC) exhibits extreme fluctuation
throughout pretraining epochs, despite the early convergence of the
reconstruction loss of GAE. This fluctuation arises because the neighbor
aggregation mechanism in graph convolution of GAE tend to overly
smooth the node representations, thereby reducing their discrimina-
tion. Consequently, nodes struggle to confidently find the appropriate
group, significantly impacting the clustering performance. So strength-
ening node discrimination is important to improve the graph clustering
performance.

Moreover, the limitation of high dependency on the quality of the
pretrained encoder is demonstrated in Fig. 2. Take DAEGC [24] as
an example of the Fine-tuning Methods, we use pretrained encoders of
different epochs as the initializations in the fine-tuning stage, including
encoders at 1, 4, and 30 pretraining epochs from Fig. 1, correspond-
ing to the least effective, moderately effective, and most effective
pretrained encoders. After fine-tuning, in Fig. 2, the final clustering
results yielded by DAEGC, labeled as NMI_1, NMI_4, and NMI_30,
clearly demonstrate the lowest, better, and best clustering performance,
which closely mirrors the quality of the pretrained graph encoder.
This phenomenon verifies that Fine-tuning Methods are very sensitive
to the pretraining encoder. That is because applying the conventional
KL-divergence as the clustering loss can prematurely restrict the ex-
ploration of representation space. Specifically, in KL-based clustering
loss, the cluster centers and encoder are coupled as parameters, both
need to be optimized together through gradient back-propagation. This
highlights the importance of encouraging GAE to be pretrained solely
in the pretraining stage of Fine-tuning Methods .

To examine how Fine-tuning Methods are influenced by the pre-
trained encoder, we introduce a metric, Ratio of Similarity (RoS), which
quantifies the distinctiveness of node representations in the context of
clustering:

RoS =
𝑛2

∑𝑚
𝑖,𝑗=1 𝝁

𝖳
𝑖 𝝁𝑗

2 ∑𝑛 𝖳
, (1)
𝑚 𝑖,𝑗=1 𝐳𝑖 𝐳𝑗

2
Fig. 2. The NMI and RoS matrices of the fine-tuning method, DAEGC, on the Cora
dataset. Initialized with the pre-trained encoder at 1, 4, and 30 epochs in Fig. 1, DAEGC
yields the clustering results represented by purple, green, and orange colors. Notably,
NMI and RoS exhibit a negative correlation. Higher NMI values and lower RoS values
indicate better clustering results.

where {𝝁𝑖}𝑚𝑖=1 denotes 𝑚 cluster centroids, and {𝐳𝑖}𝑛𝑖=1 denotes 𝑛 node
representations. A lower RoS indicates a larger degree of separation be-
tween clusters. We observe the change of ROS with the increase of fine-
tuning epoch. As illustrated in Fig. 2, the fine-tuning method, DAEGC,
initialized using the best/worst pretrained encoder at 1∕30 pretraining
epochs, performs the highest/lowest Normalized Mutual Information
(NMI) (orange/purple dashed line), but yields the lowest/highest RoS
values (orange/purple solid line), respectively. This implies that RoS
is generally negatively correlated to clustering performance; the lower
the RoS, the higher the NMI. This finding motivates us to diversify
centroids and separate clusters to enhance node discrimination for
improving the clustering task.

In this paper, we propose a novel Diversity-promoting Deep Graph
Clustering model (DDGC) that simultaneously pursues two essential
principles of maximizing inter-cluster variance and minimizing intra-
cluster variances, as illustrated in Fig. 3. Specifically, DDGC iteratively
updates the cluster centroids and node representations rather than cou-
pling them to update in the KL-divergence clustering loss. We maximize
the log-likelihood function of node representations to learn cluster
centroids, where a diversity regularization term among centroids is
exerted to gradient for diversifying centroids, thus increasing the inter-
cluster variances. Besides, we propose a Minimum Entropy (ME)-based
clustering loss to sharpen the assignment distribution for reducing
the intra-variances, which makes centroids guide intra-cluster nodes
to move toward their positions and directions. We refer centroids as
‘‘bellwethers’’, due to the leading update effect of latent node features
within clusters. The cohorts of nodes follow the diverse bellwethers,
to update. By seeking diverse bellwethers, different clusters become
more separated. Finally, we can obtain well-separate clusters with
wider cluster boundaries. Fig. 13(b) in Appendix A illustrates the
dynamic process of our ‘‘bellwethers’’ leading representation learning.
Besides, a gradient analysis between the conventional KL- and proposed
ME-based clustering loss is provided to verify the advantage of the
mechanism of sharpening the assignment distribution in our ME-based
clustering loss. Our DDGC model achieves state-of-the-art clustering
performance by implementing techniques of diversifying centroids and
sharpening assignment distribution. These techniques contribute to
stabilizing DDGC trained from scratch. Additionally, DDGC is verified
to learn discriminative representations, particularly in alleviating over-
smoothing. The main contributions of this paper are summarized as
follows:

• A new graph clustering model. We propose a novel graph clus-
tering model, DDGC, which iteratively updates the cluster cen-
troids and node representations. The proposed seeking-diverse-
bellwethers module is designed to learn diverse cluster centroids,
and then our ME-based clustering loss and reconstruction loss are

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
Fig. 3. Pulling nodes toward their centroid and pushing centroids away from each
other can minimize the intra-cluster variance while maximizing the inter-cluster
variance, leading to diverse and compact clusters.

minimized together to update node representations. The sharpen-
ing assignment mechanism will force nodes in groups to keep up
with the bellwethers to produce compact clusters.

• Diversified centroids. We propose to maximize the
log-likelihood function of node representations via gradient as-
cent to update cluster centroids, where a differentiable diversity
regularization term is introduced into the gradient function to en-
force the diversity between cluster centroids, thereby increasing
inter-cluster variance.

• Better clustering performance. We have empirically demon-
strated that the proposed method can learn diverse and compact
clusters, and achieve state-of-the-art clustering performance. The
Ablation study confirms the effectiveness of each technique. Fur-
thermore, we also conducted experiments to verify that our DDGC
is not sensitive to the pretraining of the encoder and effectively
alleviates the over smoothing issue.

The paper is structured as follows: Section 2 presents recent ad-
vancements in deep graph clustering; Section 3 explains the proposed
DDGC for graph clustering in detail; Section 4 reports on the compre-
hensive experimental study. Finally, Section 5 provides the conclusion
of the paper.

2. Related work

This section provides a review of the relevant literature. Deep clus-
tering seeks to employ neural networks to learn deep feature represen-
tations favoring the clustering tasks. We focus on the node-level graph
clustering task. With advancements in graph representation learning,
significant improvements have been achieved in graph clustering. Ex-
isting algorithms for deep graph clustering can be categorized into two
groups: (i) Two-step Methods and (ii) Fine-tuning Methods.

2.1. Two-step methods

Two-step Methods first train a graph encoder to learn node rep-
resentations via minimizing an unsupervised loss. Subsequently, they
perform conventional clustering methods, such as k-means and spectral
learning, on the learned node representations to obtain clustering
results. The key differences among them lie in the choice of graph
representation learning models, which include the variants of graph
Auto-Encoder and graph contrastive learning models.

Proper design of the graph convolution layer is a key factor in
improving clustering performance. To employ GCN in graph autoen-
coder, GAE [28] was proposed first to transform each node into latent
representations via GCN and then reconstruct the adjacency matrix via
the decoder. [15] implemented a sparse autoencoder model that penal-
izes both the reconstruction error and the sparsity error in the hidden
layer for learning non-linear representations for the clustering. [29]
further improved the sparse autoencoder by enforcing a constraint of
KL divergence between the distribution of node attributions on clusters
and predicted distribution by the neural network for better clustering
3
Fig. 4. The comparison between the Two-step Methods and Fine-tuning Methods. In
the two-step method, the first step ¬ aims to learn node representations via graph
autoencoder. Based on the learned representations, the second step ­ aims to learn
cluster centroids via performing the conventional clustering methods, e.g., K-means
or spectral method. Besides, the existing Fine-tuning Methods typically use the graph
encoder learned by the two-step method as initialization. ® aims to jointly train cluster
centroids and node representations.

performance. [19] proposed an adversarial regularization to enforce
the representations to match a prior distribution for learning compact
representations and then applied 𝑘-means on the representations. [30]
developed a denoising strategy to reduce redundant information and
noise to enhance the robustness of the autoencoder. [31] proposed a
marginalized graph convolutional network to corrupt network node
content and marginalized the corrupted features to learn graph fea-
ture representations, upon which spectral clustering was applied for
clustering.

Following the success of contrastive learning in graph and computer
vision, researchers have recently investigated how to combine con-
trastive learning and traditional clustering methods. Specifically, [20]
adopted contrastive learning to learn unsupervised node representa-
tions, instead of graph autoencoder, where the positive samples of the
query node are designed to be randomly drawn from the cluster to
which the query belongs, while the negative samples are randomly
sampled from other clusters. However, the lack of adequate task-
orientated representation learning always limits the performance of
Two-step Methods. That is, unsupervised representation learning models
are not designed dedicatedly for graph clustering. Thus, the clus-
tering may be misguided by the representation learning, leading to
non-optimal results.

2.2. Fine-tuning methods

To achieve the mutual benefit between these two steps, Fine-tuning
Methods propose to minimize a designed KL-based clustering loss for
simultaneously training node representations and cluster centers during
the fine-tuning stage. The main challenge for crafting Fine-tuning Meth-
ods lies in devising a well-thought-out clustering loss and establishing
effective self-supervised strategies for node clustering.

In particular, after pretraining a graph encoder and centroids,
DAEGC [24] simultaneously optimized node representations and cen-
troids by minimizing the designed task-oriented clustering loss in
the fine-tuning stage. It adopted the second power of the predicted
clustering assignment distribution of each node as the target distribu-
tion. The KL-divergence between these two distributions served as the
clustering loss to jointly fine-tune the node representations and cluster
centroids. The peaked target distribution acted as the self-generated

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
pseudo-label to supervise the learning of node clustering. Guided by
‘‘confident’’ assignments as soft labels, this KL-based clustering loss
can drive nodes closer to the cluster centers, leading to more compact
clusters. SDCN [25] goes further by incorporating an additional clus-
tering loss that evaluates the discrepancy between the soft clustering
assignment distribution produced by GCN and its second power form, to
facilitate the fine-tuning process. Meanwhile, DFCN [26] proposed an
interdependency learning-based structure and an attribute information
fusion module to explicitly merge the representations learned by an
autoencoder and a graph autoencoder for consensus representation
learning. DCRN [27] encoded different augmented graphs into repre-
sentations using a siamese network, subsequently reducing information
correlation at both sample-level and cluster-level respectively. It is
worth noting that all these methods employ KL-divergence as the
clustering loss. All those methods typically treat cluster centroids as
parameters and fine-tune them with graph encoder via minimizing the
KL-divergence clustering loss, where the graph encoder and cluster
centroids are firstly pretrained using an Two-step Method. We refer to
this type of methods as Fine-tuning Methods.

However, their success hinges upon the selection of a high-quality
pretrained graph encoder and properly initialized cluster centroids.
Their clustering performance often exhibits high sensitivity to the pre-
trained model, as empirically depicted in Fig. 2. Only when the high
quality of the graph encoder is selected as the initialization in the fine-
tuning stage, the clustering performance can be roughly guaranteed.
However, in practical tasks, determining a reliable stopping criterion
for selecting the pretrained encoder can be challenging. Therefore, joint
training of encoders and centroids from scratch is typically necessary.

Different from the above Two-step and Fine-tuning Methods for the
node-level graph clustering task we focus on, [32] introduced a graph-
level clustering method, Deep Graph-level Clustering (DGLC). DGLC
employed a graph isomorphism network to learn graph-level represen-
tations by maximizing mutual information between the representations
of entire graphs and substructures. [33] devised a general graph clus-
tering method applicable to four different graph types, encompassing
directed, undirected, heterogeneous, and hyperattributed graphs. [34]
mainly focused on developing a dual variational autoencoders by max-
imizing a derived variational lower bound. In this paper, we mainly
design a effective graph clustering framework to iteratively achieve
these two principles of maximizing inter-cluster variances while mini-
mizing intra-cluster variances, instead of diligently improving the graph
autoencoder. Besides, numerous existing studies have also focused on
the task of multi-view clustering task [35–38]. [39] developed a GCN-
based multi-view clustering network with weighting mechanism and
collaborative training (DMVGC) over the graph and image data with
a specially designed attention module in the encoder and an adaptive
weighting mechanism in the decoder for the reconstruction loss. [8]
designed an anchor-based multi-view graph clustering framework, Ef-
ficient Multi-View Graph Clustering with Local and Global Structure
Preservation (EMVGC-LG) to optimize anchor construction and graph
learning to enhance the clustering quality. Additionally, the topic of
overlapping graph clustering was studied in [40], where a new over-
lapping graph clustering algorithm was proposed that integrates the
topological structure and attributes into the cluster potential game. In
computer vision, [7] introduced a new contrastive clustering algorithm
with graph consistency constraint to reduce the effect of the uncertainty
of positives and negatives on contrastive clustering for image datasets.

3. Proposed model

In this section, we will specifically describe our graph clustering
model, Diversity-promoting Deep Graph Clustering model (DDGC).
First, we introduce the Seeking-Diverse-Bellwether (SDB) module,
where a diversity regularization term is incorporated into the gradient
ascent formulation of the maximum log-likelihood function to pro-
mote diversity among the cluster centroids, thereby obtaining diverse
4
cluster centroids. Furthermore, we introduce a Sharpening Clustering
Assignment (SCA) module which utilizes the minimum entropy (ME)
of node assignment distribution as the clustering loss instead of the
conventional KL-divergence. Our ME-based clustering loss minimizes
the intra-cluster variance by enforcing a one-hot clustering assignment
distribution. The SDB module serves as the inner loop to learn the
diverse centroids based on the learned node representations. In the
outer loop, with the centroids fixed, the SCA module trains node
representations by minimizing our ME-based clustering loss and the
reconstruction loss. The overall structure of our proposed DDGC is
illustrated in Fig. 5.

Basic Notations. An undirected attributed graph is represented as
 = { ,  ,𝐗}, where  = {𝑣𝑖}𝑛𝑖=1 denotes the set of nodes with || = 𝑛,
 represents the set of edges, and 𝐗 ∈ R𝑛×𝑑 indicates the feature matrix
of nodes where 𝑑 is the feature dimension associated with each vertex.
The topological structure of the graph is represented as the adjacent
matrix 𝐀 ∈ {0, 1}𝑛×𝑛, where 𝐀𝑖𝑗 = 1 if there exists an edge between
nodes 𝑣𝑖 and 𝑣𝑗 ; 𝐀𝑖𝑗 = 0 otherwise. The goal of graph clustering is to
partition all nodes into the 𝑚 groups, each with its respective cluster
centroids {𝝁𝑖}𝑚𝑖=1, in the latent space. Node representations 𝐙 ∈ R𝑛×𝑑

can be obtained via training a graph encoder.

3.1. Seeking diverse bellwethers

In this subsection, we specifically introduce the Seeking-Diverse-
Bellwethers (SDB) module, which aims to learn diverse cluster centroids
from the node representations obtained by the graph encoder. Recall
that the deep graph clustering task aims to allocate 𝑛 nodes into 𝑚 cate-
gories in the latent space. Suppose that node representations 𝐳 ∈ {𝐳𝑖}𝑛𝑖=1
are drawn from a simplified multivariate Gaussian Mixture Model with
the probability density function: 𝑝(𝐳|𝜣) ∶= 1

𝑚
∑𝑚

𝑖=1  (𝐳|𝜽𝑖), where 𝜽𝑖 =
{𝝁𝑖,𝜮𝑖} denotes the parameters of the 𝑖th Gaussian with mean vector
𝝁𝑖 and covariance matrix 𝜮𝑖. Its connection with the Gaussian Mixture
Model (GMM) has been discussed in Remark 1. Assuming that all nodes
are independent and identically distributed, the model parameters 𝜣
can be estimated by maximizing the log-likelihood function of all node
representations, i.e., �̂� = argmax𝜣 log(

∏𝑛
𝑖=1𝑝(𝐳𝑖|𝜣)), where ∏𝑛

𝑖=1𝑝(𝐳𝑖|𝜣)
is the joint probability distribution. The log-likelihood function can be
derived as:

𝐹 (𝐙|𝜣) = log (
∏𝑛

𝑖=1𝑝(𝐳𝑖|𝜣)) = 1
𝑛

𝑛
∑

𝑗=1
log

(1
𝑚

𝑚
∑

𝑖=1
 (𝐳𝑗 |𝝁𝑖,𝜮𝑖)

)

(2)

where (𝒛𝑗|𝝁𝑖,𝜮𝑖) = 1
√

(2𝜋)𝑑det(𝜮𝒊)
exp[− 1

2 (𝒛𝑗−𝝁𝑖)⊤𝜮−𝟏
𝒊 (𝒛𝑗−𝝁𝑖)] represents

the probability of 𝐳𝑖 conforming to a multivariate normal distribution
 (𝝁𝑖,𝜮𝑖). It is worth noting that the learnable mean vectors {𝝁𝑖}𝑚𝑖=1
are the cluster centroids we aim to find.

Remark 1 (The Connection with Multivariate Gaussian Mixture Model
(GMM)). In a multivariate GMM, the probability density function of
observations is defined as 𝑓 (𝐲|𝜣) =

∑𝑚
𝑖=1 𝜋𝑖 (𝐲|𝝁𝒊,𝜮𝑖) with

∑𝑚
𝑖 𝜋𝑖 =

1. Given a set of independent observations 𝐘 = {𝐲𝑖}𝑛𝑖=1, the goal of
multivariate GMM is to learn the parameters of multivariate normal
distribution 𝜣 = {(𝝁𝒊,𝜮𝑖)}𝑚𝑖=1 and the weights {𝜋𝑖}𝑚𝑖=1, via maximizing
the following log-likelihood function,

𝐹𝑔𝑚𝑚(𝐘|𝜣) = 1
𝑛

𝑛
∑

𝑗=1
log

(

𝑚
∑

𝑖=1
𝜋𝑖 (𝐲𝑗 |𝝁𝑖,𝜮𝑖)

)

. (3)

Notably, optimizing both {𝜋𝑖}𝑚𝑖=1 and 𝜣 directly is intractable, so the
EM algorithm [41] is resorted to updates {𝜋𝑖}𝑚𝑖=1 and 𝜣 by alternating
the E-step (Expectation-step) and the M-step (Maximization-step), re-
spectively. When 𝜋𝑖 = 1

𝑚 ,∀𝑖 ∈ {1,… , 𝑚}, Eq. (3) is equivalent Eq. (2),
namely, our clustering objective is a special case of GMM. With the
assumption of 𝜋𝑖 = 1

𝑚 , each cluster nearly contains an equal number
of nodes. This assumption of balanced clustering does not adversely
impact our clustering performance. In this case, the model parameters

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
Fig. 5. Overview of the proposed DDGC framework. The graph encoder takes the adjacency matrix 𝐀 and feature matrix 𝐗 as the inputs and outputs node representations 𝐙.
Based on the learned representations, the Seeking-Diverse-Bellwethers (SDB) module learns diverse cluster centroids by the gradient ascent in Eq. (4a). Then, the proposed Sharping
Clustering Assignment (SCA) module computes the clustering assignment distribution of each node and leverages these distributions to calculate the ME-based clustering loss. The
total loss, weighting the clustering loss and the reconstruction loss, is minimized to update the graph encoder via stochastic gradient descent while keeping the centroids fixed.
The flow of gradient ascent is denoted as the red arrows. The grey arrows indicate the gradient ascent in Eq. (4a).
𝜣 can be directly optimized via gradient ascent to maximize the log-
likelihood function in Eq. (2) instead of the iterative optimization of
the complex EM algorithm.

In general, the model parameters 𝜣 can be estimated via max-
imizing the log-likelihood function 𝐹 (𝐙|𝜣) in Eq. (2). To promote
the diversity among centroids, we perform the gradient ascent to
update the cluster centroid {𝝁𝑖}𝑚𝑖=1, where a diversity regularizer is
incorporated into the gradient function inspired by nonlinear stein vari-
ation gradient descent [42]. More precisely, we perform the following
gradient ascent to optimize the cluster centroids until convergence:
𝝁𝑡+1
𝑖 = 𝝁𝑡

𝑖 + 𝜀𝜙(𝝁𝑡
𝑖), ∀𝑖 = 1,… , 𝑚, (4a)

𝜙(𝝁𝑡
𝑖) =

𝑚
∑

𝑗=1

[

∇𝝁𝑡𝑗
𝐹 (𝐙|𝜣) ⋅ 𝑘(𝝁𝑡

𝑗 ,𝝁
𝑡
𝑖) +

𝛼
𝑚
∇𝝁𝑡𝑗

𝑘(𝝁𝑡
𝑗 ,𝝁

𝑡
𝑖)
]

, (4b)

where 𝜙(𝝁𝑡
𝑖) is the gradient of the centroid of cluster 𝑖 at the 𝑡th

iteration, 𝜀 is the small step size, the function 𝑘(⋅, ⋅) can be any positive
definite kernel measuring the similarity between two centroids, and
𝛼 is the balance coefficient to control the regularization strength. In
Eq. (4a), for each cluster 𝑖 ∈ {1,… , 𝑚}, we can perform the gradi-
ent ascent to obtain the centroid 𝝁𝑡+1

𝑖 of cluster 𝑖 at the (𝑡 + 1)-th
step. Eq. (4b) is the expansion equations of the gradient 𝜙(𝝁𝑡

𝑖). More
specifically, in Eq. (4b), the first term aims to fit the given node
representations by increasing the log-likelihood function. The second
term is a diversity regularizer, which acts as a repulsive force to prevent
all cluster centroids from collapsing together into local modes. More
detailed elaboration on the roles of these two terms in Eq. (4b) is
provided below:

• Fitting representations. The first term in Eq. (4b) is instrumen-
tal in maximizing the log-likelihood function 𝐹 (𝐙|𝜣) through
gradient ascent in Eq. (4a), whose role is to fit the given node
representations 𝐙 ∈ R𝑛×𝑑 . More specifically, the first term com-
putes weighted gradients of the log-likelihood function 𝐹 (𝐙|𝜣)
to each cluster centroid {𝝁𝑡

𝒋}
𝑚
𝑗=1. These weight are determined by

the similarity 𝑘(𝝁𝑡
𝑖,𝝁

𝑡
𝑗) between the centroids of cluster 𝑖 and the

cluster 𝑗, 𝑗 ∈ {1,… , 𝑚}. The gradient of 𝐹 (𝐙|𝜣) to each cluster
centroid 𝝁𝑡

𝑗 can be derived as:

∇𝝁𝑡𝑗
𝐹 (𝐙|𝜣) = 1

𝑛
∑

(𝜮𝑡
𝑗)
−1(𝐳𝑖 − 𝝁𝑡

𝑗), (5)

𝑛 𝑖=1

5
It is noteworthy that the gradients of all centroids, ∇𝝁𝑡𝑗
𝐹 (𝐙|𝜣), 𝑗 ∈

{1,… , 𝑚} are used to update 𝝁𝑡+1
𝑖 , but the gradient of 𝝁𝑡

𝑖 remains
dominant its own updates at the (𝑡 + 1)-th iteration, because
𝑘(𝝁𝑡

𝑖,𝝁
𝑡
𝑖) = 1 ≥ 𝑘(𝝁𝑡

𝑖,𝝁
𝑡
𝑗),∀𝑗 ≠ 𝑖. Moreover, if 𝝁𝑡

𝑗 is closer to 𝝁𝑡
𝑖

than other centroids, ∇𝝁𝑡𝑗
𝐹 (𝜣) contributes more significantly to

the update of 𝝁𝑡
𝑖, due to the sharing of more semantic information.

• Diversifying centroids. The second term in Eq. (4b) serves as a
repulsive force to promote diversity among the centroids {𝝁𝑖}𝑚𝑖=1.
We adopt the Radial Basis Function (RBF) kernel as a specific
example of 𝜙(𝝁𝑡

𝑖) while noting that many other choices are ap-
plicable. The RBF kernel is expressed as:

𝑘(𝝁,𝝁′) = exp(−
‖𝝁 − 𝝁′

‖

2

2ℎ2
),

where ℎ denotes the bandwidth, typically set to the median of
the distance between pairwise centroids. Therefore, the gradient
of 𝑘(𝝁𝑡

𝑗 ,𝝁
𝑡
𝑖) to 𝝁𝑡

𝑗 in Eq. (4b) can be derived as:

∇𝝁𝑡𝑗
𝑘(𝝁𝑡

𝑗 ,𝝁
𝑡
𝑖) = −

|𝝁𝑡
𝑗 − 𝝁𝑡

𝑖|

ℎ2
exp(−

‖𝝁𝑡
𝑗 − 𝝁𝑡

𝑖‖
2

2ℎ2
), (6)

which plays a crucial role in promoting diverse centroid learning.
We refer to it as the diversity regularizer. Specifically, if the
neighboring centroid 𝝁𝑡

𝑗 is closer to 𝝁𝑡
𝑖 at the 𝑡-the iteration, the

gradient ∇𝝁𝑡𝑗
𝑘(𝝁𝑡

𝑗 ,𝝁
𝑡
𝑖) provided by 𝝁𝑡

𝑗 will be larger. Consequently,
this larger gradient will push 𝝁𝑡

𝑖 and 𝝁𝑡
𝑗 away from each other at

the (𝑡+1)-th iteration. In essence, the closer neighboring centroid
significantly influences the update of 𝝁𝑡

𝑖. Ultimately, this process
results in the diversification and uniform separation of all cluster
centers within the latent space.

Metric of diversity. The diversity regularizer is incorporated into
the gradient function in Eq (4b) for enhancing the diversity among
cluster centroids. To provide a more intuitive insight into the degree
of separation among centroids, we propose the following metric to
quantify the diversity of centroids:

 = E𝑖≠𝑗𝑘(𝝁𝑖,𝝁𝑗) = E𝑖≠𝑗 exp(−
‖𝝁𝑖 − 𝝁𝑗‖

2

2ℎ2
),

where  represents the expectation of the kernel values across all pairs
of centroids. A lower value of  indicates larger diversity and less

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
Fig. 6. DDGC vs. DDGC𝑘𝑚𝑒𝑎𝑛𝑠 on Cora. (a) DDGC exhibits lower similarity and greater
diversity between cluster centroids compared to DDGC𝑘𝑚𝑒𝑎𝑛𝑠. (b) DDGC achieves better
clustering performance in terms of ACC and NMI.

similarity among centroids. To empirically investigate the impact of di-
versifying centroids, we conduct comparative experiments between our
model, DDGC, and its variant, DDGC𝑘𝑚𝑒𝑎𝑛𝑠, on the Cora dataset, which
replaces the seeking-diverse-bellwethers (SDB) module with kmeans in
DDGC. The clustering results are illustrated in Fig. 6. With the increase
of epochs, the similarity/diversity among centroids in both DDGC and
DDGC𝑘𝑚𝑒𝑎𝑛𝑠 decrease/increase gradually. However, the SDB module
enables DDGC to achieve lower similarity scores, alongside higher
ACC (Accuracy) and NMI (Normalized Mutual Information), which
demonstrates our DDGC can learn more diversified centroids compared
to DDGC𝑘𝑚𝑒𝑎𝑛𝑠, contributing to the improved clustering performance.

3.2. Sharpening clustering assignment

In this subsection, we introduce the Sharpening Clustering Assign-
ment (SCA) module to minimize intra-cluster variances. The Minimum
Entropy (ME)-based clustering loss is proposed to replace the conven-
tional KL-based clustering loss, and its advantage will be explained by
comparing these two losses. Furthermore, we compare the gradients
of those two clustering losses to the clustering assignment distribution,
which verifies theoretically the ME-based loss exhibits larger gradients,
enabling the assignment distribution to be sharper.

3.2.1. Proposed ME-based clustering loss
The design of the clustering loss has always been a challenge for

the unsupervised clustering task, because of the difficulty of designing
self-supervised labels. In this paper, we propose a new method that get
rid of the necessity of designing self-supervised labels. Our method em-
ploys minimum entropy as the clustering loss to sharpen the clustering
assignment distribution. Specifically, to obtain the clustering assign-
ment distribution of each node, we utilize Student’s 𝑡-distribution to
estimate the probability of node 𝑖 belonging to cluster 𝑗, via quantifying
the normalized similarity between the node representation 𝐳𝑖 and the
cluster centroid 𝝁𝑗 :

𝑝𝑖𝑗 =
(1 + ‖𝐳𝑖 − 𝝁𝑗‖

2∕𝑎)−
𝑎+1
2

∑𝑚
𝑗=1(1 + ‖𝐳𝑖 − 𝝁𝑗‖

2∕𝑎)−
𝑎+1
2

, (7)

where 𝑚 is the number of clusters, 𝑎 denotes the degree of freedom of
the Student’s 𝑡-distribution, which is set to 1 in experiments. Besides,
𝑝𝑖𝑗 ∈ [0, 1] indicates the probability of assigning node 𝑖 to cluster 𝑗.
For any node 𝑖, its assignment distribution can be represented by a 𝑚-
dimensional vector 𝐩𝑖 = [𝑝𝑖1,… , 𝑝𝑖𝑚]1×𝑚 with

∑

𝑗 𝑝𝑖𝑗 = 1. The assignment
distributions of all 𝑛 node can form the predicted assignment matrix,
𝐏 = [𝐩1,… ,𝐩𝑛]𝑛×𝑚. Furthermore, our proposed ME-based clustering loss
over the node assignment distribution can be formulated as follows:

𝐿𝑒 = −1
𝑛

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑝𝑖𝑗 log 𝑝𝑖𝑗 . (8)

Minimizing the clustering loss 𝐿𝑒 can sharpen the node assignment
distributions toward the one-hot distribution, thereby promoting the
6
compactness of clusters and clearer boundaries, ultimately enhancing
clustering performance. To illustrate the advantage of our Minimum
Entropy (ME)-based clustering loss, we will compare it with the con-
ventional KL-based clustering loss, which will be introduced in detail
next.

Conventional KL-based clustering loss. The KL-based clustering
loss commonly used in previous literature [24,25] is defined as the
KL-divergence distance between the predicted assignment distribution
𝐏 ∈ [0, 1]𝑛×𝑚 and the self-generated target distribution 𝐐 ∈ [0, 1]𝑛×𝑚

across all nodes, expressed as:

𝐿𝑘𝑙 = 𝐾𝐿(𝐏 ∥ 𝐐) = 1
𝑛

𝑛
∑

𝑖

𝑚
∑

𝑗
𝑞𝑖𝑗 log

𝑞𝑖𝑗
𝑝𝑖𝑗

, (9)

where 𝑞𝑖𝑗 =
𝑝2𝑖𝑗∕

∑

𝑖 𝑝𝑖𝑗
∑

𝑢(𝑝
2
𝑖𝑢∕

∑

𝑖 𝑝𝑖𝑢)
.

Here, the target probability 𝑞𝑖𝑗 is calculated by squaring and normal-
izing the predicted assignment probability 𝑝𝑖𝑗 , which serves as the
pseudo-label to supervise the training of the graph encoder. Thus,
the target distribution of node 𝑖, 𝐪𝑖 = [𝑞𝑖1,… , 𝑞𝑖𝑚]1×𝑚, is a peaker
distribution, which forms the target assignment matrix of all nodes,
𝐐 = [𝐪1,… ,𝐪𝑛]𝑛×𝑚. Minimizing the KL-based clustering loss in Eq. (9)
enables the predicted assignment distribution 𝐩𝑖 approaching to the
target distribution 𝐪𝑖 for any node 𝑖, which can effectively pull node 𝑖
to its centroids, and thus promote cluster compactness. Next, we derive
the gradient of 𝐿𝑘𝑙 to the cluster centroid 𝝁𝑗 as follows:

∇𝝁𝑗𝐿𝑘𝑙 = − 𝑎 + 1
𝑎

∑

𝑖
(1 +

‖𝐳𝑖 − 𝝁𝑗‖
2

𝑎
)−1 × (𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝐳𝑖 − 𝝁𝑗).

Since the target probability, 𝑞𝑖𝑗 acts as the pseudo-label, it is regarded
as a constant at each epoch. The gradient ∇𝝁𝑗𝐿𝑘𝑙 includes an extra term
(𝑝𝑖𝑗 − 𝑞𝑖𝑗), which implies that the optimization direction of the cluster
center 𝝁𝑖 may be influenced by the pre-defined 𝑞𝑖𝑗 , may potentially
leading to the learning of incorrect cluster centroids. Specifically, if the
predicted assignment distribution 𝑝𝑖𝑗 is inaccurate, the manipulation
of squaring 𝑝𝑖𝑗 can magnify the error, resulting in an suboptimal,
even incorrect optimizing direction, such that the pseudo-label 𝑞𝑖𝑗 may
misguide the training of centroids and graph model. But our ME-based
loss does not rely on any self-generated target distribution, so it is more
flexible to correct the error of 𝑝𝑖𝑗 , effectively addressing the limitation
of the convention KL-based loss.

Remark 2 (The Conventional KL-based Clustering Loss Relies on the
Pre-Defined Pseudo-Label, Potentially Leading to Suboptimal Centroid Op-
timization). Obviously, in Eq. (8), our ME-based clustering loss 𝐿𝑒
depends solely on the predicted assignment probability 𝑝𝑖𝑗 , thereby
getting rid of requirement of designing pre-defined supervision. Next,
we derive the gradient of the KL-based loss 𝐿𝑘𝑙 to the cluster centroid
𝝁𝑗 as outlined below:

∇𝝁𝑗𝐿𝑘𝑙 = − 𝑎 + 1
𝑎

∑

𝑖
(1 +

‖𝐳𝑖 − 𝝁𝑗‖
2

𝑎
)−1 × (𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝐳𝑖 − 𝝁𝑗).

where the target probability, 𝑞𝑖𝑗 , acting as the pseudo-label, is regarded
as a constant at each epoch. The gradient ∇𝝁𝑗𝐿𝑘𝑙 can be updated
by using feature-space embeddings {𝐳𝑖}𝑛𝑖=1. However, it also includes
an extra term (𝑝𝑖𝑗 − 𝑞𝑖𝑗), indicating that the optimization direction of
the cluster center 𝝁𝑖 can be influenced by the pre-defined 𝑝𝑖𝑗 , may
potentially leading to the learning of incorrect cluster centroids.

3.2.2. A gradient comparison between the ME- and KL-based clustering loss
To further elucidate the superiority of our ME-based clustering

loss, we conduct a theoretical comparison of the gradients of the ME-
and KL-based clustering losses to the assignment probability. These
gradients propagated through the chain rule, play a crucial role in
updating the graph encoder. For simplicity, we take a clustering task

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
Fig. 7. The comparison of the gradients in ME- and KL-based clustering loss. Under
any gradient, if 𝑝1 < 0.5, 𝑝1 will be updated toward 0; if 𝑝1 > 0.5, 𝑝1 will be updated
toward 1. The gradient of ME ∇𝑝1𝐿

𝐩𝑖
𝑒 (solid red line) consistently exceeds that of KL

∇𝑝1𝐿
𝐩𝑖
𝑘𝑙 (solid blue line). And 𝑝1 → {0, 1}, the gap (grey area) between two gradients

widens, leading to a faster update of 𝑝1 toward 0∕1 with the gradient of ME-based loss
.

with two clusters as an example. Let 𝐩𝑖 = [𝑝1, 1 − 𝑝1] denote the
assignment distribution of node 𝑖. The ME-based clustering loss over
𝐩𝑖 can be derived as:

𝐿𝐩𝑖
𝑒 = −[𝑝1 log 𝑝1 + (1 − 𝑝1) log(1 − 𝑝1)], (10)

where 𝑝1 and (1 − 𝑝1) denotes the probabilities of assigning node 𝑖 to
the cluster one and cluster two, respectively. Then, the gradient of 𝐿𝐩𝑖

𝑒
to 𝑝1 can be calculated as follows:

∇𝑝1𝐿
𝐩𝑖
𝑒 = − log

𝑝1
1 − 𝑝1

, (11)

which is the function of only one variable 𝑝1. Next, we calculate the
gradient of the KL-based clustering loss to 𝑝1. For a clustering task
with two clusters, the KL-divergence clustering loss in Eq. (9), can be
rewritten as,
𝐿𝐩𝑖
𝑘𝑙 = 𝑞1 log 𝑞1 + (1 − 𝑞1) log(1 − 𝑞1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

(12)

−𝑞1 log 𝑝1 − (1 − 𝑞1) log(1 − 𝑝1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

.

where 𝑞1 is the target probability of node 𝑖 belonging to cluster one,
𝑞1 =

𝑝21
𝑝21+(1−𝑝1)

2
1. Due to serving as the pseudo-label of 𝑝1, 𝑞1 remains

fixed and does not participate in the gradient back-propagation. Thus
𝐿𝐩𝑖
𝑘𝑙 can be split into the sum of two terms, the constant and reduction

term. Only the reduction term contains the variable 𝑝1, so it can be used
to optimize model parameters. The gradient of 𝐿𝐩𝑖

𝑘𝑙 to 𝑝1 can be derived
as:

∇𝑝1𝐿
𝐩𝑖
𝑘𝑙 = −

𝑞1
𝑝1

+
1 − 𝑞1
1 − 𝑝1

=
1 − 2𝑝1

𝑝21 + (1 − 𝑝1)2
. (13)

These two gradients, 𝐿𝐩𝑖
𝑘𝑙 and 𝐿

𝐩𝑖
𝑒 to 𝑝1, are both the functions of

the variable 𝑝1. Hence, we depict the two gradients2 in Eqs. (11)
and (13), as well as the functions of 𝐿𝐩𝑖

𝑒 and the reduction term of
𝐿𝐩𝑖
𝑘𝑙 in Fig. 7. As observed, ∇𝑝1𝐿

𝐩𝑖
𝑘𝑙 has an upper bound: ∇𝑝1𝐿

𝐩𝑖
𝑘𝑙 ≤ 1

with lim𝑝1→0∕1 ∇𝑝1𝐿
𝐩𝑖
𝑘𝑙 = 1. In contrast, ∇𝑝1𝐿

𝐩𝑖
𝑒 has no bound, and

lim𝑝1→0∕1 ∇𝑝1𝐿
𝐩𝑖
𝑒 = ∞. With 𝑝1 approaching 0∕1, the gradient of the

1 In Eq. (9), both ∑𝑖 𝑝𝑖𝑗 and
∑

𝑖 𝑝𝑖𝑢 in the numerator and denominator are
the normalization terms, representing the sum of assignment probability within
clusters, which is used to enforce balanced clustering assignment. As we focus
on balance clustering, these two terms can be omitted in derivations.

2 In Fig. 7, the ‘‘log’’ in 𝐿𝑒, 𝐿𝑘𝑙, ∇𝑝1𝐿
𝐩𝑖
𝑒 , and ∇𝑝1𝐿

𝐩𝑖
𝑘𝑙 are based on 𝑒, i.e., ln,

which is consistent with our source code.
7
Fig. 8. DDGC vs. DDGC𝐾𝐿 on Cora. (a) DDGC produces more compact clusters than
DDGC𝐾𝐿 because of the larger compactness metric across all epochs. (b) DDGC
consistently outperforms DDGC𝐾𝐿 in terms of both ACC and NMI.

ME-based clustering loss significantly surpasses that of the KL-based
clustering loss. Thus, ∇𝑝1𝐿

𝐩𝑖
𝑒 can push the assignment distribution of

node 𝑖, [𝑝1, 1 − 𝑝1], closer to the one-hot distribution compared to
∇𝑝1𝐿

𝐩𝑖
𝑘𝑙 , thereby verifying the advantage of sharpening the assignment

distribution of our ME-based clustering loss. Therefore, our ME-based
clustering loss can produce more compact clusters than the KL-based
loss. To quantify the compactness of the cluster, we propose the follow-
ing metric to observe the differences between the clusters produced by
those two losses.

Metric of Compactness. For the clustering task of 𝑚 clusters, we
utilize the average maximum probability of each assignment distribu-
tion 𝐩𝑖 to measure the compactness of the clusters:

 = 1
𝑛

𝑛
∑

𝑖=1
𝑝∗𝑖 , where 𝑝∗𝑖 = max 𝐩𝑖

where 𝑝∗𝑖 represents the maximum probability of assigning node 𝑖 to
clusters, indicating the confidence of the node belonging to its own
centroid.  denotes the averaged assignment confidence over all nodes.
A higher  signifies a lower distance from nodes to their own centroids
and a higher compactness of clusters. To investigate the effectiveness
of our ME-based loss, we conduct experiments to compare our model
DDGC and its variant DDGC𝐾𝐿, which replaces ME with KL-divergence.
As depicted in Fig. 8, with the increase of the training epochs, the
compactness value of both ME- and KL-based clustering losses gradually
increases. However, benefiting from the larger gradient, our ME-based
loss with larger  can produce more compact clusters and achieve
better clustering performance compared to the KL-based loss.

3.3. The whole framework

In this section, we demonstrate the framework of the proposed
DDGC, which incorporates these two modules: Seeking Diverse Bell-
wethers (SDB) and Shapening Clustering Assignment (SCA), to jointly
optimize node representations and clustering. The overall framework
is illustrated in Fig. 5. The graph encoder takes the adjacency matrix
𝐀 ∈ {0, 1}𝑛×𝑛 and the feature matrix 𝐗 ∈ R𝑛×𝑑0 as inputs to learn
node representations {𝐳𝑖}𝑚𝑖=1. Based on the node representations, the
SDB module maximizes the log-likelihood function to learn the diverse
cluster centroids, {𝝁𝑖}𝑚𝑖=1, through gradient ascent, as described in
Eq. (4a). Based on the centroids, the SCA module calculates the cluster-
ing assignment distribution of each node and our ME-based clustering
loss, which is minimized together with the reconstruction loss to update
the graph encoder via stochastic gradient descent.

Graph AutoEncoder. Following DAEGC [24], we adopt the graph
attentional autoencoder to learn the node representations by minimiz-
ing the reconstruction loss. The encoder takes both the graph structure
and node attributes as inputs, which outputs the representation 𝐳𝑙+1𝑖 at
the 𝑙 layer by aggregating the neighbors 𝑖 of node 𝑖:

𝐳𝑙+1𝑖 = 𝜎(
∑

𝛽𝑖𝑗𝐖𝑙𝐳𝑙𝑗), (14)

𝑗∈𝑖

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
where 𝛽𝑖𝑗 =
exp(𝛿𝑀𝑖𝑗 (⃖⃗ℎ𝑇 [𝐖𝑙𝐳𝑙𝑖 ∥ 𝐖𝑙𝐳𝑙𝑗]))

∑

𝑟∈N𝑖
exp(𝛿𝑀𝑖𝑟(⃖⃗ℎ𝑇 [𝐖𝑙𝐳𝑙𝑖 ∥ 𝐖𝑙𝐳𝑙𝑟]))

where 𝜎 is a nonlinear function, 𝐖𝑙 denotes the network parameters
of the 𝑙th layer, and 𝛽𝑖𝑗 is the attention coefficient indicating the
importance of neighbor 𝑗 to node 𝑖. Additionally, 𝛿 is an activation
function, and ⃖⃗ℎ ∈ R2𝑑 is a parameter vector. 𝑀 = (𝐵 + 𝐵2 +⋯ + 𝐵𝑡)∕𝑡
denotes a proximity matrix obtained by exploiting 𝑡-order neighbor
nodes. Here 𝐵 is the transition matrix where 𝐵𝑖𝑗 = 1

𝑑𝑖
 if 𝑒𝑖𝑗 ∈  and

𝐵𝑖𝑗 = 0 otherwise. The decoder we adopt is a simple inner product
�̂�𝑖𝑗 = 𝜎(𝐳⊤𝑖 𝐳𝑗), which predicts the probability of an edge between node
𝑖 and node 𝑗 and thus outputs the reconstructed adjacency matrix �̂�.
In principle, we could use any form of graph encoder and decoder to
compute the graph reconstruction loss.

Total Loss. The graph autoencoder can be optimized via minimizing
the total loss, which comprises the proposed clustering loss and the
reconstruction loss. The reconstruction loss of the graph autoencoder is
defined as the difference between the reconstructed adjacency matrix
�̂� and the given adjacency matrix 𝐀:

𝐿𝑟 =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑙𝑜𝑠𝑠(𝐀𝑖,𝑗 , �̂�𝑖,𝑗). (15)

 The total loss can be computed by weighting the reconstruction loss
𝐿𝑟 and the proposed ME-based clustering loss 𝐿𝑒:
𝐿 = 𝐿𝑟 + 𝜂𝐿𝑒, (16)

where 𝜂 is a balance factor. To control the increasing impact of ME-
based loss on the total loss, we design a dynamic coefficient using a
sigmoid-like function,
𝜂(𝑡; 𝑎, 𝑏, 𝑐) = 𝑐

1 + 𝑒−𝑎𝑡+𝑏
, (17)

where 𝑡 represents the epoch number. 𝑎, 𝑏, and 𝑐 are hyperparameters to
control the rate, initial weight, and amplitude, respectively. The curves
of 𝜂 with different 𝑎 and 𝑏 values are illustrated in Fig. 13 in Appendix.
Overall, with the increase of 𝑡, 𝜂 gradually grows regardless of the
values of 𝑎 and 𝑏. Our method DDGC is summarized in Algorithm 1.

Our DDGC method mainly consists of two components: clustering
and representation optimization.

• Clustering Optimization. Given the node representations
learned by the graph encoder, the seeking diverse bellwether
(SDB) module performs the gradient ascent to maximize the log-
likelihood function in Eq. (4a) for obtaining the diverse cluster
centroids in the inner loop.

• Representation Optimization. Based on the learned centroids,
the Sharpening Clustering Assignment module (SCA) calculates
the clustering assignment distributions of all nodes and the ME-
based clustering loss 𝐿𝑒. The total loss 𝐿, which weights the
reconstruction loss and the ME-based clustering loss, is minimized
to update the graph encoder and optimize node representations in
the outer loop.

While minimizing the total loss 𝐿 to update the graph encoder and
optimize node representations, we keep the cluster centroids fixed in
the outer loop. Conversely, we keep the representations fixed while
maximizing the log-likelihood function 𝐹 (𝐙|𝜣) for 𝑇 epochs in the
inner loop to optimize the cluster centroids via the gradient ascent in
Eq. (4a). Essentially, our framework decomposes the optimization of
graph encoder and cluster centroids, facilitating a more efficient and
stable training procedure. However, the conventional KL-based cluster-
ing loss is often minimized to optimize the node representations and
cluster centroids simultaneously, where centroids are taken as model
parameters to be updated with the graph encoder in the fine-tuning
stage. This coupling of optimization into the same stage prevents these
methods from finding the optimal solution. The Algorithm 1 outlines
the complete process of our DDGC. We first minimize the reconstruction
8
Algorithm 1 Algorithm of our DDGC.
Input: Graph  = { ,  ,X} with the set of nodes  , the set of edges  and
feature matrix X; 𝑚: number of clusters; 𝑇 : number of epochs for learning
diverse centroids; 𝐾 ′ : number of epochs for pretraining representations;
𝐾: number of epochs for minimizing the total loss; 𝑙: number of layers of
graph encoder; {W𝑗}𝑙𝑗=1: the network parameters of 𝑙 layers; 𝛼: the diversity
hyperparameter (Eq. (4b)); a, b, c: hyperparameters in adaptively balance
coefficient (Eq. (17)).
Output: The clustering results
for 0 ← 𝑘 to 𝐾 ′ − 1 do
Update graph encoder {W𝑗}𝑙𝑗=1 by minimizing the reconstruction loss in
Eq. (15).

end for
for 𝐾 ′

← 𝑘 to 𝐾 do
Learn node representations {z𝑖}𝑛𝑖=1 via the graph encoder.
for 𝑡 = 1, 2,… , 𝑇 do
Learn the diverse cluster centroids {𝝁𝑖}𝑚𝑖=1 by the gradient ascent
Eq. (4a) and Eq. (4b)

end for
Calculate the clustering assignment distribution of each node based on
the learned {z𝑖}𝑛𝑖=1 and {𝝁𝑖}𝑚𝑖=1 via Eq. (7).
Calculate the reconstruction loss 𝐿𝑟 in Eq. (15) and the minimum
entropy loss 𝐿𝑒 in Eq. (8), respectively.
Update graph encoder {W𝑗}𝑙𝑗=1 by minimizing the total loss 𝐿 = 𝐿𝑟+𝜂𝐿𝑒.

end for
Predict the cluster according to the maximum probability in the node
clustering assignment distribution 𝑠𝑖 = argmax𝑗 𝑝𝑖𝑗 .
Evaluate the predicted clusters in terms of clustering metrics.
Return the clustering results.

loss for 𝐾 ′ epochs for the pretrain graph encoder to encourage the
encoder to explore better representations fully. Moreover, we also
derive another version of DDGC without the pretraining stage for 𝐾 ′

epochs, enabling DDGC to train from scratch, called DDGC w/o pre.

3.4. Complexity analysis

In this subsection, we compare the proposed DDGC and state-of-
the-art Fine-tuning Methods in terms of model and time complexity. In
general, DDGC has fewer model parameters and lower computational
complexity than baselines. To simplify, we assume the dimension of
the hidden embeddings is 𝑑 in all layers of the graph encoder, then the
centroid dimension is 𝑑. The number of clusters is 𝑚. The number of
edges is ||.

Model Complexity. Our DDGC has lower model parameters than
the simplest fine-tuning method, DAEGC [24]. Specifically, DDGC
adopts the same attentional Graph Autoencoder (GAE) as DAEGC
to learn node representations. But in the fine-tuning stage, DAEGC
takes the cluster centroids as the model parameters to be updated
together with the graph encoder, which brings an additional 𝑂(𝑚𝑑)
of model complexity than our DDGC. Moreover, there are two more
complex Fine-tuning Methods, DFCN [26] and DCRN [27]. The graph
encoder adopted by them includes three modules: GAE, Improved GAE
(IGAE), and a fusion module, which will obviously bring larger model
complexity. This complex encoder also needs to be fine-tuned, which
raises higher model complexity in the fine-tuning stage.

Time Complexity. For our DDGC, in the inner loop, the computa-
tional complexity of the SDB module is 𝑂(𝑇 𝑛𝑚𝑑2), where its dominant
term, 𝑛𝑚𝑑2, arises from the computations of the multivariant Gaussian
Mixture Model as described in Eq.(2) (its covariance matrix is an
identity matrix with a diagonal of 1), and 𝑇 denotes the number
of training epoch of inner loop. Therefore, the total computational
complexity of our DDGC is 𝑂(𝐾||𝑑𝑘+(𝐾−𝐾 ′)𝑇 𝑛𝑚𝑑3), where 𝐾 denotes
the number of the total epoch, the sum of the pretraining epoch 𝐾 ′ and
fine-tuning epoch (𝐾 −𝐾 ′). Another dominant term, ||𝑑𝑘, arises from

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
Table 1
The statistics of datasets.
 Datasets #Node #Feature #Clusters #Links Density
 Cora 2708 1433 7 5429 0.074%
 Citeseer 3327 3703 6 4732 0.043%
 DBLP 4058 334 4 7056 0.043%
 ACM 3025 1870 3 26,256 0.287%
 AMAP 7650 745 8 238,163 0.407%

the attention-based graph encoder with 𝑘 attention head, it training is
across the total training process.

For DAEGC, the computation cost of its graph encoder is the same
as that of our DDGC, i.e., ||𝑑𝑘, since our DDGC follows the encoder
of DAEGC. The computation cost of the Student-t distribution, 𝑂(𝑛𝑚𝑑),
dominates the complexity of the clustering part of DAEGC. DAEGC pre-
trains the encoder for 𝐾 ′ epochs and fine-tunes the cluster centroids
and encoder for (𝐾−𝐾 ′) epochs, leading to time complexity, 𝑂(𝐾||𝑑𝑘+
(𝐾 − 𝐾 ′)𝑛𝑚𝑑). For DFCN and DCRN, both use two components as
encoder, i.e., Auto-Encoder and Improved Graph Auto-Encoder, and use
deconvolution layers to reconstruct the node attributes and adjacency
matrix. Compared with the simple Graph Auto-Encoder and inner-
product decoder in DDGC and DAEGC, they have clearly introduced
more computational complexity. For the clustering part in fine-tuning
stage, the dominant term 𝑂(𝑛2𝑑) of DFCN comes from the normalized
self-correlation matrix (Eq.(8) in [26]). The dominant term 𝑂(𝑛3) of
DCRN comes from two losses (Eqs. (5) and (8) in [27]) that makes the
cross-view feature correlation matrix equal to an identity matrix. There-
fore, the computational complexity of DFCN and DCRN are respectively
𝑂(2𝐾||𝑑 + (𝐾 −𝐾 ′)𝑛2𝑑) and 𝑂(2𝐾||𝑑 + (𝐾 −𝐾 ′)𝑛3)

To sum up, we can find that: i) Compared to DAEGC, our DDGC
has achieved comparative time complexity due the only induced linear
complexity of 𝑇 and 𝑑2 with 𝑑 ≪ 𝑛 and 𝑇 ≪ 𝑛; ii) Obviously, DFCN
and DCRN exhibit higher time complexity than our DDGC and DAEGC;
iii) Scaling to large-scale datasets only induced linear time complexity
compared to DAEGC. TBesides, to ensure the convergence of the log-
likelihood objective in the SDB module, we set the training epoch 𝑇 to
300. However, 𝑇 can be further reduced in practical applications.

4. Experiments

In this section, we evaluate the clustering performance of the pro-
posed DDGC on five widely-used benchmark datasets. We compare
our DDGC against 11 state-of-the-art (SOTA) methods to verify its
superiority. Besides, we conduct an ablation study to demonstrate
the effectiveness of each component and analyze the hyperparame-
ter sensitivity. Furthermore, we validate that DDGC can alleviate the
over-smoothing issue of the graph convolution network.

4.1. Benchmark datasets and baselines

To evaluate the effectiveness of the proposed DDGC model, we
conducted extensive experiments on five widely-used benchmark graph
datasets: Cora [24], Citeseer [28], DBLP3, ACM4, and AMAP [43]. Table
1 summarizes the structural details of the five graph datasets, where the
density is defined as the number of existing edges divided by the square
of the number of nodes, indicating how sparse a graph is.

For a comprehensive evaluation, we compared DDGC with the
state-of-the-art methods from three categories:

3 https://dblp.uni-trier.de
4 http://dl.acm.org/
9
• Two-step methods design various graph autoencoders to learn
unsupervised node representations. Subsequently, based on the
learned representations, they employ the traditional clustering
method, such as kmeans and spectral clustering to obtain the
clustering results. The differences among these methods primar-
ily lie in the design of the graph autoencoder. These Two-step
Methods mainly include GAE [28], VGAE [28], TADW [44], and
ARGE [19], which design GAE, VGAE, DeepWalk, adversarially
regularized (variational) graph autoencoder, respectively.

• Fine-tuning Methods including DAEGC [24],
AGCN [45], SDCN [25], DFCN [26], and DCRN [27], AGCC [46],
jointly train the cluster centroids and graph encoder by mini-
mizing the KL-based clustering loss and the representation loss
in the fine-tuning stage, where the cluster centroids are taken as
model parameters to be updated via stochastic gradient descent.
Before the fine-tuning stage, they all undergo a pretraining phase
wherein the graph encoder and node representations are pre-
trained by minimizing an unsupervised loss, such as contrastive
loss and the reconstruction loss. The differences among these
methods exist in the design of the graph encoder and the design
of additional modules. For instance, DAEGC [24] utilizes a graph
attentional encoder to learn node representations. Both DFCN and
DCRN adopt a complex graph encoder with three modules: GAE,
IGAE, and the fusion module. Based on the complex encoder,
DCRN designs a cluster- and node-level correlation reduction
module.

• End-to-end methods. To verify the potential of diversifying the
cluster centroids for improving graph clustering, we develop new
versions of our DDGC and Fine-tuning Methods that omit the
pretraining stage, which we refer to End-to-end Methods. These
variants are denoted as DDGC w/o pre, DAEGC w/o pre, DFCN
w/o pre, and DCRN w/o pre, respectively, which are initialized
randomly and trained from scratch. We use an abbreviation of
‘‘w/o pre’’ to indicate removing the pretraining process from the
training process. Moreover, DAGC [47], a deep attention-guided
graph clustering with dual self-supervision, can be effectively
trained in an end-to-end manner due to the proposed soft and
hard self-supervision strategy. AGCC [46] is an end-to-end par-
allelly adaptive graph convolutional clustering model with two
pathway networks to update the graph structure and extract the
latent data features.

4.2. Experiment setup

We follow the experimental set-up of the baseline, DAEGC [24]),
for a fair comparison, including the weight decay of 5 × 10−3, Adam
optimizer, the 1-th layer with 256 dimensions and 2-th layer with 16
dimensions in graph convolution encoder, the 30 pretraining epochs
and the 200 fine-tuning epochs; While additional hyperparameters are
selected according to the model performance, especially that intro-
duced by our DDGC, including 𝑎, 𝑏 and 𝑐 in Eq. (17), as well as the
epochs 𝑇 for training the inner loop in Algorithm 1. The sensitivity
analysis of 𝑐 and the 𝛼 controlling the diversity regularization term in
Eq. (4b) have been provided in Fig. 12. We set 𝑇 , 𝑎, and 𝑏 to 300, 1.5,
and 0.0005, which are selected according to the model performance
and their validation procedures are provided in Fig. 16 in Appendix
C.2. We set ℎ to

√

MED
2 log𝑁 , where MED is the median of the pairwise

Euclidean distance between 𝑚 cluster centroids {𝝁𝑖}𝑚𝑖=1, i.e., MED()
with  = {‖𝝁𝑖 − 𝝁𝑗‖

2 ∣ 0 ≤ 𝑖, 𝑗 ≤ 𝑚}. Sensitivity analysis of ℎ can
be found in Appendix C.1. 𝐾 ′ is set to 0 in DDGC w/o pre. For our
DDGC, we followed DAEGC [24] for data pre-processing and testing.
During the training of the seeking diverse bellwethers module, only
the centroids {𝝁𝑖}𝑚𝑖=1 are learned, while the covariance matrix 𝜮𝑖 of
the underlying Gaussian mixtures is set as the identity matrix for com-
putational convenience. For DCRN [27], DAEGC [24], and DFCN [26]

https://dblp.uni-trier.de
http://dl.acm.org/

P. Zhao et al.

.

Knowledge-Based Systems 317 (2025) 113322
Table 2
Performance comparison on graph datasets w.r.t. ACC (%), NMI (%) and ARI (%). The bold values indicate the best results. ‘‘w/o pre’’ is an abbreviation for ‘‘without pretraining’’
 Datasets Cora Citeseer DBLP ACM AMAP

 Methods ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
 TADW 53.60±0.6 36.60±0.51 24.00±0.52 52.90±0.89 32.00±0.7 28.60±0.8 54.24±1.8 22.76±1.5 19.51±2.0 78.36±1.95 49.05±2.04 51.90±2.35 63.42±3.05 51.06±2.9 39.72±2.5
 Two-step GAE 38.90±0.51 17.82±0.35 14.79±0.46 38.00±0.8 17.40±0.7 14.10±1.2 61.21±1.2 30.80±0.9 22.02±1.4 84.52±1.4 55.38±1.9 59.46±3.1 71.57±2.48 62.13±2.79 48.82±4.57 Methods VGAE 38.90±0.8 16.00±0.5 11.32±0.2 39.20±0.4 16.30±0.3 10.10±0.5 58.59±0.1 26.92±0.1 17.92±0.1 84.13±0.2 53.20±0.5 57.72±0.7 68.35±0.9 56.93±0.82 42.18±0.6
 ARGE 64.00±1.0 44.90±0.8 35.20±0.68 57.30±1.2 35.00±0.72 34.10±0.6 59.22±1.0 23.16±0.5 22.35±0.45 86.29±2.36 56.21±1.98 63.37±1.5 69.28±1.7 58.36±1.43 44.18±0.88
 SDCN 60.01±0.40 40.13±0.39 33.32±0.27 66.79±0.3 40.91±0.3 41.05±0.4 68.05±1.8 39.50±1.3 39.15±2.0 89.45±0.2 68.31±0.3 72.91±0.4 53.44±0.81 44.85±0.83 31.21±1.23 DAEGC 69.37±1.0 52.66±0.73 46.28±0.47 67.34±1.4 42.00±0.9 42.92±1.2 62.05±0.5 32.49±0.5 21.03±0.5 86.94±2.8 56.18±4.2 59.35±3.9 76.44±0.01 65.57±0.03 59.39±0.02 AGCN 67.94±0.9 50.74±0.78 45.01±0.5 68.79±1.0 41.54±0.7 43.79±0.74 73.26±1.2 39.68±0.5 42.49±0.63 90.59±1.0 68.38±0.66 74.20±0.85 75.89±0.9 68.62±0.7 57.56±0.67 Fine-tuning DFCN 68.95±0.81 51.34±0.41 45.54±0.48 69.50±0.2 43.90±0.2 45.50±0.3 76.00±0.8 43.70±1.0 47.00±1.5 90.60±0.2 72.90±0.4 69.40±0.4 76.88±0.8 69.21±1.0 58.98±0.84 Methods DCRN 69.39±0.60 52.96±0.35 46.45±0.49 70.76±0.18 45.04±0.35 45.72±0.30 78.03±0.25 47.45±0.44 52.64±0.46 90.76±0.2 68.27±0.61 75.45±0.52 79.91±0.13 73.64±0.24 61.35±0.20 DDGC(ours) 72.14±0.3 54.10±0.22 49.90±0.19 71.83±0.3 45.47±0.23 47.52±0.2 79.47±0.1 48.37±0.13 54.50±0.09 91.64±0.12 71.31±0.09 76.86±0.1 81.02±0.02 72.18±0.02 64.82±0.01
 AGCC 67.56±3.1 49.83±2.5 44.37±1.82 68.08±3.9 40.86±2.4 41.82±2.2 73.45±3.7 40.36±2.65 44.40±2.1 90.38±4.12 68.34±3.4 73.73±3.98 78.82±4.77 72.85±3.48 60.81±3.23 DAGC 68.76±2.7 50.48±2.1 44.91±1.5 69.43±3.21 43.68±2.76 45.06±2.53 77.82±4.10 46.74±3.62 52.34±3.1 90.74±4.0 69.39±2.9 74.66±3.2 78.43±3.6 72.23±3.52 61.37±3.2
 DAEGC w/o pre 54.65±8.5 43.88±7.5 35.34±4.74 46.93±5.72 27.07±4.36 23.53±3.98 54.55±7.36 24.60±4.0 24.87±3.2 87.93±10.2 62.04±8.3 67.52±6.8 56.78±6.3 55.92±5.28 42.62±4.32 End-to-end DFCN w/o pre 53.36±5.2 38.33±3.76 28.79±3.28 45.33±5.89 26.90±2.52 23.56±2.0 43.31±6.05 11.04±2.1 9.11±1.9 89.85±8.3 67.25±5.9 72.54±8.4 58.90±6.2 53.27±5.7 37.98±3.0
 Methods DCRN w/o pre 50.92±6.9 33.28±4.58 22.90±3.9 57.80±7.3 29.20±2.5 28.35±2.1 46.14±3.2 16.18±1.5 13.16±1.6 88.94±4.9 64.16±3.2 69.96±2.92 58.12±3.15 54.32±2.89 43.09±3.0
 DDGC w/o pre(ours) 69.32±4.0 52.74±3.1 46.37±2.5 70.18±3.8 44.34±1.91 45.46±2.0 78.36±3.1 47.75±2.7 53.31±2.6 91.37±2.98 70.56±2.42 76.20±2.0 80.33±2.62 70.91±2.1 63.77±1.91
on Cora, we executed their official source code following the settings
provided in their original literature and reported their average results.
DDGC w/o pre, DAEGC w/o pre, DFCN w/o pre, and DCRN w/o pre
are initialized randomly and trained from scratch. For DFCN [26] on
other datasets, we directly reported the corresponding values as listed
in DCRN [27].

Metrics. Clustering results are obtained by assigning nodes to the
cluster corresponding to the maximum value in the predicted assign-
ment distribution vector. We adopt the widely-used metrics to evaluate
the clustering performance [14], Accuracy (ACC), Normalized Mutual
Information (NMI), and Adjusted Rand Index (ARI). Higher values for
all metrics indicate better clustering results. The best mapping between
the predicted cluster-ID and the given class-ID was constructed using
the Kuhn-Munkres [48].

4.3. Overall performance

To evaluate the clustering performance of the proposed DDGC, we
conduct extensive experiments on five benchmark datasets, comparing
DDGC against two categories comprising 11 baselines, including two-
step, and Fine-tuning Methods. Moreover, to verify the potential of
diversifying centroids and sharpening assignment distribution, we com-
pare DDGC w/o pre with End-to-end methods, i.e., our adapted versions
of baselines without pretraining, namely DAEGC w/o pre, DFCN w/o
pre, and DCRN w/o pre. The comprehensive clustering performance is
summarized in Table 2. We have the following observations:

• DDGC achieves state-of-the-art clustering performance on all
datasets, which outperforms different methods, including the two-
step methods, and Fine-tuning Methods in terms of ACC, NMI,
and ARI metrics. Among them, DFCN [26] and DCRN [27] are
considered as the strongest deep clustering models. Specifically,
compared to Two-step Methods including TADW [44], GAE [28],
VGAE [28], and ARGE [19], DDGC consistently outperforms
them by a considerable margin. We conjecture that lacking the
mutual interaction of embedding learning and clustering train-
ing, Two-step Methods may suffer from the mismatch between
two objectives and thus obtain inferior clustering performance
compared to Fine-tuning Methods and DDGC. Moreover, our DDGC
exhibits superior performance over Fine-tuning Methods due to
incorporating mechanisms including diversifying cluster centroids
in the SDB module and the sharper assignment distribution in the
SCA module. Generally, the Fine-tuning Methods outperform the
Two-step Methods significantly, benefiting from the joint training
of the cluster centroids and the node representations.

• DDGC w/o pre demonstrates significant superiority over the ex-
isting End-to-end methods, including AGCC and DAGC, and all de-
veloped End-to-end methods, including DAEGC w/o pre, DFCN w/o
10
pre, and DCRN w/o pre. Specifically, DDGC w/o pre significantly
improves the best accuracy by 19.92%, 13.87%, 24.92%, 3.71%,
and 21.52% on Cora, Citeseer, DBLP, ACM, and AMAP, respec-
tively. The mechanisms of diversity- and compactness-enhanced
clustering not only elevate the clustering performance but also
facilitate effective end-to-end training of DDGC. Besides, DFCN
w/o pre and DCRN w/o pre exhibit notably inferior performance
compared to DAEGC w/o pre on Cora, DBLP, and ACM. That is
because the complex graph encoder adopted by DFCN [26] and
DCRN [27] includes three modules comprising GAE, IGAE, and
its fusion module to learn node representations, which is hard to
be trained from scratch together with the cluster centroids. That
means DFCN and DCRN are unsuitable for training from scratch.

• The following evidence can verify that DDGC has significantly
reduced the reliance on pre-training: (i) when removing the pre-
training stage, the clustering performance (ACC, NMI, ARI) of
baselines, i.e., DAEGC w/o pre, DFCN w/o pre, DCRN w/o pre,
has significantly decreased. However, the clustering performance
of DDGC w/o pre is very close to those of our DDGC (with pre-
training); (ii) compared with baselines including DAEGC, DFCN,
and DCRN, our DDGC w/o pre, even skipping the pre-training
phase, still achieves comparable clustering performance on Cora
and Citeseer datasets, and superior performance on DBLP, ACM
and AMAP datasets; (iii) compared with all baselines without pre-
training (DAEGC w/o pre, DFCN w/o pre, DCRN w/o pre), DDGC
w/o pre significantly outperform their clustering performance, in
terms of all metrics, i.e., ACC, NMI, ARI. More experiments are
provided in Appendix E.

4.4. Ablation analysis

To further investigate effectiveness of each component in DDGC,
we develop three distinct variants of DDGC: DDGC𝐾𝐿, DDGC𝑘𝑚𝑒𝑎𝑛𝑠,
and DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿 by substituting the proposed Minimum Entropy
(ME)-based clustering loss with the conventional KL-based loss, substi-
tuting the seeking-diverse-bellwethers (SDB) module with the classical
kmeans algorithm, and employing both the KL-based loss and kmeans,
respectively. We conduct the ablation study by comparing DDGC with
these three variants on five datasets, and their clustering results are
presented in Table 3.

As observed, we can demonstrate several key insights: (1) DDGC
consistently outperforms DDGC𝐾𝐿 with an average accuracy margin
of 1.2% across all datasets, affirming the effectiveness of our ME-
based clustering loss in enhancing the clustering performance; (2)
Compared with DDGC𝑘𝑚𝑒𝑎𝑛𝑠, DDGC achieves an average accuracy gain
of 1.8% across all dataset, which demonstrates the effectiveness of the
diversifying cluster centroids in the seeking-diverse-bellwethers (SDB)

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
Table 3
Ablation study w.r.t. ACC (%), NMI (%) and ARI (%).
 Methods DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿 DDGC𝐾𝐿 DDGC𝑘𝑚𝑒𝑎𝑛𝑠 DDGC

 Datasets ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
 Cora 67.76 49.24 45.64 69.76 49.17 45.66 68.87 50.32 45.43 72.14 54.10 49.90
 Citeseer 69.70 43.20 45.26 70.06 45.22 43.73 70.09 43.42 45.76 71.83 45.47 47.52
 DBLP 75.06 43.14 45.68 75.67 43.30 46.72 77.57 46.99 47.86 79.47 48.37 54.50
 ACM 86.08 60.69 64.49 88.56 64.71 69.52 90.71 69.72 74.66 91.64 71.31 76.86
 AMAP 75.23 58.76 53.49 79.45 65.46 61.40 77.25 65.81 56.55 81.02 72.18 64.82
Fig. 9. Clustering visualization for the Citeseer dataset. The grey dots denote the
learned centroid of each cluster.

module; (3) The SDB module exhibits a more pronounced impact on
the clustering results compared to the ME-based clustering loss. This is
evidenced by DDGC𝐾𝐿 outperforming DDGC𝑘𝑚𝑒𝑎𝑛𝑠 across all datasets
in terms of ACC, NMI, and ARI metrics; (4) DDGC demonstrates a
larger accuracy increase, averaging 3.5%, over five datasets compared
to DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿. This suggests that simultaneously incorporating the
SDB module and ME-based clustering loss into our framework further
enhances clustering performance by promoting the compactness and
diversity of clusters. Furthermore, based on the baseline, DAEGC, we
develop other variants to verify the effectiveness of the SDB module and
the ME-based clustering loss, such as DAEGC𝑀𝐸 that replaces the KL-
based loss with our ME loss. The results of these variants are presented
in Appendix.

4.5. Cluster visualization

To visually assess the effect of the diverse cluster centroids and
the sharpening assignment distribution in DDGC, we conduct t-SNE
visualization for the above three variants, including DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿,
DDGC𝐾𝐿, and DDGC𝑘𝑚𝑒𝑎𝑛𝑠 on the Citeseer dataset. Fig. 9 visualizes
the node representations learned by DDGC and these three variants,
which are projected into a two-dimensional space using the t-SNE
algorithm [49]. As indicated in Table 1, the Citeseer dataset comprises
6 clusters. Different colors represent the classes of nodes, and the black
dots denote the cluster centroids.

The visualized clustering results reveal several key findings: (1) In
Fig. 9(b) and (d), the cluster centroids, learned by DDGC𝐾𝐿 and DDGC,
appear as pentagrams, evenly distributed in space, but the cluster
centroids in Fig. 9(a) and (c) do not exhibit the nonuniform pattern.
This is the evidence that the diversity regularizer in the gradient
11
Fig. 10. Comparison of the baseline DAEGC and DDGC performance (ACC (%), NMI
(%)) with different pretraining epochs on Cora and ACM datasets. Best viewed in color.

function, Eq. (4b), effectively enables the SDB module to learn diverse
cluster centroids; (2) Fig. 9(c) and (d) demonstrate that the clusters
learned by both DDGC𝑘𝑚𝑒𝑎𝑛𝑠 and DDGC are more compact compared
to DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿 and DDGC𝐾𝐿. This compactness arises because the
ME-based clustering loss facilitates the clustering assignment distri-
bution of each node to approach a one-hot distribution, resulting in
more compact clusters than those achieved with the conventional KL-
based loss; (3) Notably, DDGC in Fig. 9(d) presents well-separated,
diverse and compact clusters compared to DDGC𝑘𝑚𝑒𝑎𝑛𝑠+𝐾𝐿 in Fig. 9(a).
Its improvement can be attributed to the seeking diverse bellwether
module and the sharpening assignment mechanism in DDGC. These
components enable DDGC to learn diversified centroids and compact
clusters, leading to learning discriminative node representations and
stabilizing the training process.

4.6. Analysis of stability to pretraining

To further demonstrate the stability of DDGC with respect to pre-
training, we compared it with the baseline DAEGC [24], as they utilize
the same attentional autoencoder. We vary the number of pretraining
epochs within {5, 10, 20, 30} on Cora and report the fine-tuning results
in Fig. 10. It is evident from the results that our DDGC consistently
outperforms DAEGC across all pretraining epochs and mitigates the
dependence on the well-pretrained encoder.

From the observations depicted in Fig. 10, we can draw the follow-
ing conclusions: (1) The baseline DAEGC demonstrates high sensitivity
to the quality of the pretraining encoder, as its clustering performance
significantly decreases when the number of pretraining epochs is re-
duced on Cora and ACM datasets. That is because the minimize the
KL-based clustering loss and the reconstruction loss to simultaneously
train the cluster centroids and the graph encoder, where the centroids
are taken as the parameters, limiting the exploration of representation
space; (2) In contrast, our method DDGC performs stably and robustly
over accuracy and NMI, regardless of the variations in the pretraining
encoder. DDGC consistently achieves an accuracy of approximately
71% and an NMI of 54% on Cora, as well as an accuracy of approx-
imately 91.5% and an NMI of 71.5% on the ACM dataset across all
pretraining epochs. The experimental results confirm the effectiveness
of the diverse centroids and sharpening assignment mechanism. Our
framework of DDGC decomposes the optimization of centroids and
graph encoder, leading to better clustering performance.

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
Fig. 11. Trained our DDGC and DAEGC on Cora dataset using the same pre-trained
GAE encoder of 30 epochs, showing two different measures for increasing number of
layers ranging from 2 to 7: (left) Dirichlet energy of the layer-wise node features,
(right) Mean Average Distance (MAD).

Fig. 12. Clustering accuracy (%) vs. hyperparameters 𝛼 and 𝑐 on Cora dataset.

4.7. Studies on alleviating the over-smoothing problem

We conduct experiments to validate that our DDGC model can
alleviate the over-smoothing issue to some extent. The over-smoothing
problem refers to the significant deterioration in clustering perfor-
mance as the number of layers in GNNs increases. Its occurrence
can be verified in Fig. 14. We compare two over-smoothing metrics,
i.e., Dirichlet energy and Mean Average Distance (MAD) (we introduce
them in Appendix B.2), of our DDGC and the baseline DAEGC [24]
by increasing the depth of graph attentional autoencoder from 2 to 7
layers.

Fig. 11 displays these two metrics of DAEGC [24] and DDGC as
the number of layers in graph encoder increases. The experimental
findings highlight the following insights: (1) DAEGC exhibits a gradual
decline in Dirichlet energy and MAD as the number of layers increases,
indicating suffering from over-smoothing ; (2) In contrast to that, DDGC
alleviates the issue of over-smoothing by keeping the layer-wise Dirichlet
energy and MAD approximately constant, showcasing its ability to
learn discriminative node representations by separating and condensing
clusters.

4.8. Hyperparameter analysis

We investigate the influence of hyperparameters 𝛼 in Eq. (4b) and
the amplitude 𝑐 in Eq. (17). The 𝛼 plays a pivotal role in balancing the
term of fitting node representations and the diversity regularizer for
diversifying the cluster centroids. The amplitude 𝑐 is more important
to influence the value of the balance factor 𝜂, where 𝑎 and 𝑏 are set
to 1.5 and 0.0005, respectively. We conduct experiments to show the
effect of these two parameters on Cora datasets.

From the results illustrated in Fig. 12, it can be observed that
DDGC is insensitive to hyperparameter 𝑐. The accuracy metric has
slight increments with the increasing value 𝑐. Notably, the clustering
performance of our DDGC fluctuates regarding the hyperparameter 𝛼
with DDGC achieving its highest accuracy when 𝛼 is set to 0.96.
12
Fig. 13. Comparison of centroids and bellwethers. Three colored circles represent
nodes of three clusters. The red arrow indicates the diversifying centroids of SDB. The
dashed arrow denotes the bellwether role of centroids in SCA, which pulls intra-cluster
nodes to move toward their own centroids.

5. Conclusion

Most existing deep graph clustering models struggle to achieve op-
timal performance due to their cluster-friendly representation learning
and insufficient support for learning diversified clusters. To address
their limitations, we proposed the Diversity-promoting Deep Graph
Clustering framework (DDGC). DDGC embodies two crucial principles
in clustering: minimizing the intra-cluster variance and maximizing the
inter-cluster variance. We introduce a diversity term into the process
of centroids learning, enabling DDGC to learn diverse cluster centroids
and enhance node discrimination. Additionally, our proposed sharp-
ening clustering assignment mechanism embedded in our ME-based
clustering loss further consolidates clusters. These techniques enable
stable training of DDGC from scratch but also significantly improve
clustering performance. DDGC exhibits remarkable improvement in
performance and robustness compared to state-of-the-art models.

CRediT authorship contribution statement

Peiyao Zhao: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Methodology, Investigation, For-
mal analysis, Data curation. Xin Li: Writing – review, Supervision,
Software, Funding acquisition, Formal analysis . Yuangang Pan: Writ-
ing – review, Supervision, Methodology, Formal analysis. Ivor W.
Tsang: Supervision, Resources, Funding acquisition, Formal anal-
ysis. Mingzhong Wang: Writing – review & editing. Lejian Liao:
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would also like to thank the anonymous reviewers for
their constructive feedback, which greatly helped us to improve the
quality and clarity of the paper. This work was partially supported by
the National Natural Science Foundation of China (NSFC) under Grants
92270125 and 62276024.

Appendix A. Difference between centroids and bellwethers

We clarify two meanings of ‘‘bellwethers’’: (i) the means of node
features within clusters, (ii) leading the update of latent node features
within clusters, facilitated by a diversity regularization term in Eq. (4b).
Finally, we can obtain well-separate clusters with wider cluster bound-
aries. Fig. 13(b) illustrates the dynamic process of our ‘‘bellwethers’’
leading representation learning. The traditional ‘‘centroids’’ are only
the centers of clusters, corresponding to the first meaning, shown in
Fig. 13(a).

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
Fig. 14. Comparison of DAEGC and DDGC performance (ACC (%), NMI) with varying
the depth of graph encoder on Cora dataset. DDGC boosts overall performance by
facilitating increased diversity with the addition of layers. Best viewed in color.

Appendix B. Over-smoothing

B.1. Over-smoothing on graph clustering

Some graph smoothing improves performance before
oversmoothing occurs, while too much smoothing inevitably leads
to oversmoothing [50]. Oversmoothing hence makes the node features
lose information for distinguishing nodes quickly when the layer size
goes to infinity. The goal of graph clustering is to partition nodes into
distinct clusters, ensuring that nodes within clusters are more similar
than those between clusters. The reduction in node discrimination
caused by the over-smoothing problem results in the DAEGC and DDGC
models producing clustering-unfriendly representations, which hinder
the ability to distinguish groups in the clustering task, thereby signifi-
cantly impairing model performance. Fig. 14 illustrates that DDGC and
DAEGC suffered from the over-smoothing issue.

B.2. Dirichlet energy and mean average distance

Besides, to further verify the mitigating over-smoothing of our DDGC,
we introduce two additional metrics, Dirichlet energy and Mean Average
Distance. Existing approaches [51–53] to measure over-smoothing in
deep GNNs have mainly been based on the concept of Dirichlet energy
on graphs,

(𝐙𝑛) = 1
||

∑

𝑖∈

∑

𝑗∈𝑖

‖𝐙𝑛
𝑖 − 𝐙𝑛

𝑖 ‖
2
2 (18)

where 𝐙𝑛 is the learned node embeddings of all nodes at the 𝑛th layer,
and 𝑖 denotes the neighbors set of the node 𝑖. Besides, Mean Average
Distance (MAD) is also an additional evaluation metric to measure over-
smoothing broadly used in a variety of existing approaches [54,55]:

(𝐙𝑛) = 1
||

∑

𝑖∈

∑

𝑗∈𝑖

(1 −
𝐙𝑛𝑇
𝑖 𝐙𝑛

𝑗

‖𝐙𝑛
𝑖 |||| 𝐙

𝑛
𝑗‖

) (19)

Both metrics measure the distance in representations between nodes
and their neighbors. We conduct the following experiments to compare
Dirichlet energy and MAD of our DDGC and the baseline with increasing
layers. Fig. 11 in Section 4.7 has demonstrated that our DDGC indeed
mitigates the over-smoothing problem compared to DAEGC.
13
Fig. 15. Comparison of different bandwidths of our RBF kernel 𝑘(𝝁𝑖 ,𝝁𝑗) = exp(−
𝐷2

𝑖𝑗

2ℎ2)
with 𝐷𝑖𝑗 = ‖𝝁𝑖−𝝁𝑗‖. (a) ℎ = 1 vs. ℎ = 2. (b) Changed ℎ across iterations: the accuracy
(ACC) performance and the centroid similarity of DDGC with increasing 𝜌 from 0.4 to
1.2 (we use 𝜌 ⋅MED(𝐷) replace MED(𝐷) in ℎ). (c) Constant ℎ across iterations: the
ACC performance with increasing constant ℎ from 1.2 to 5.2. In Fig. 15(b) and (c),
the green and yellow shadows respectively denote the small and large ℎ. The red and
blue Stars denote the clustering results of our ℎ: for Fig. 15(b), 𝜌 = 1; for Fig. 15(c),
our ℎ is averaged approximately at 4.7 over all iterations.

Appendix C. Analysis of hyperparameters

C.1. Analysis of ℎ in RBF kernel

The institution of ℎ is that it can normalize the Euclidean distance
such that the sum of the kernel values of a query centroid 𝝁𝑖 is
1, i.e., ∑𝑚

𝑗=1 𝑘(𝝁𝑖,𝝁𝑗) ≈ 𝑁 exp(− 1
ℎ2
MED2) = 1, where 𝑘(𝝁𝑖,𝝁𝑗) =

exp(− ‖𝝁𝑖−𝝁𝑗‖2

2ℎ2) is our adopted RBF kernel. That can ensure that our ker-
nel is normalized and ranges from 0 (in the infinite-distance limit) to 1
(when 𝝁𝑖 = 𝝁𝑗). Note that in this way, the bandwidth ℎ actually changes
adaptively across the iterations. Fig. 15(a) illustrates the difference of
kernel functions with different ℎ sizes. The right value of ℎ is important to
decide which centroids should be considered similar. Too-large ℎ makes the
influence of the kernel span a larger area, making centroids far apart
assigned the non-negligible or high similarity. Too-small ℎ makes the
influence of the kerne more localized around the query centroid 𝝁𝑖,
assigning higher similarity only to close centroids. In the following, we
will conduct experiments to analyze the effect of bandwidth ℎ on model
performance.

Influence on model performance. To analyze the influence of ℎ
on our DDGC method, we develop two types of ℎ as variants: with
epoch increasing (i) adaptively changing and (ii) remaining constant
ℎ. For (i), we replace MED of our ℎ by 𝜌 ⋅ MED, i.e.,

√

𝜌⋅MED
2 log𝑁 , with

𝜌 ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2}. The ℎ variants of 𝜌 > 1 (resp.
𝜌 < 1) are large (resp. small) ℎ. For (ii), we pre-fix constant ℎ with
ℎ ∈ {1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2}, where the variants are
considered as large (resp. small]) ℎ if ℎ > 4.7 (resp. ℎ < 4.7) (because
the ℎ of our MED is averaged at 4.7 across all iterations). We evaluate
our ℎ and those variants by the clustering accuracy (ACC) performance
and the metric of centroid diversity (or similarity) of our paper.

From Fig. 15, we can summarize the following conclusions: (i) For
Fig. 15(a), when 𝜌 < 1, as 𝜌 increases the ACC performance of 𝜌 ⋅MED
has been improved steadily due to the decreasing similarity among
centroids. Conversely, when 𝜌 > 1, with increasing 𝜌 the ACC has been
decreasing due to the increasing similarity among centroids. Fig. 15
exhibits a similar pattern. (ii) In both Fig. 15(b) and (c), our ℎ with
MED has achieved better accuracy (ACC) (red Stars), compared to
other ℎ variants, including 𝜌 ⋅ MED and fixed constants, which has
verified that too-large or small bandwidth ℎ can adversely affect the
model clustering performance. That is because our ℎ in our kernel has
made DDGC learn more diverse cluster centroids (blue Stars) with
fewer similarities than other variants ℎ.

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
Fig. 16. The clustering accuracy (%) of DDGC with different 𝑇 , 𝑎 and 𝑏.

Fig. 17. Left: Selection process for the optimal sub-range within the broader range
[0.1, 1.1] for hyperparameter 𝛼; Right: Local search for the optimal value within the
sub-range.

Fig. 18. The comparison of 𝜂 with different 𝑎 and 𝑏. (a) Fixing 𝑏, the larger 𝑎 is, the
faster the weight of the entropy regularization increases and vice versa. (b) Fixing 𝑎,
the larger 𝑏 is, the larger the weight of the regularization is, and vice versa.

C.2. Analysis of 𝑇 , 𝑎 and 𝑏

In hyperparameter settings, we set the 𝑇 , 𝑎, and 𝑏 to 300, 1.5, and
0.0005, which are selected by the following sensitivity analysis and
validation procedures in Fig. 16.

C.3. Analysis of diversity coefficient 𝛼

We have demonstrated the process of selecting the range for hy-
perparameters 𝑎. Specifically, we first identified the optimal sub-range
for 𝑎 as [0.9, 1] by searching within the broader range [0.1, 1.1], as
illustrated in Fig. 17(a). Then we locally searched in the sub-range
[0.92, 1] and found the optimal value as 0.96 in Fig. 17(b).

Appendix D. Analysis of dynamic coefficient

Specifically, 𝑐 is the upper bound of the balance weight. Specifically,
taking 𝑐 = 10 as an example, Fig. 18(a) shows the curves of 𝜂(𝑡; 𝑎, 𝑏 =
3) = 10

1+𝑒−𝑎𝑡+3 with only varying 𝑎 and fixing 𝑏 = 3. We find that varying
𝑎 only changes the rate at which the entropy regularization merges in
the total loss, but the initial weight remains unchanged 10

1+𝑒3 . Fig. 18(b)
shows the curves of 𝜂(𝑡; 𝑎, 𝑏 = 3) = 10

1+𝑒−0.1𝑡+𝑏 with only varying 𝑏 and
fixing 𝑎 = 0.1. We find that varying 𝑏 only changes the initial weight,
but the rate remains unchanged, i.e., all curves have the same gradient
∇ 𝜂 = 0.1𝑒−0.1𝑡. That is why we call 𝑎 the rate and 𝑏 the initial weight.
𝑡

14
Fig. 19. The performance of different methods w.r.t. iteration on Cora and Citeseer.
Both DAEGC and DDGC use the same AGE parameters and centroids from the 10th
iteration of the pretraining as the initialization settings. The pretraining results at 10th
iteration are marked with a bold purple cross.

Appendix E. Additional analysis of stability

In Fig. 19, we visualize the performance (ACC and NMI) of our
DDGC (refer to DDGC+𝑃 and DAEGC both initialized by the same pre-
trained encoder at 10 pretrained epoch in Fig. 19, where the bold purple
cross is the training curve of pretraining autoencoder for 100 epoch. The
results show that: (1) DAEGC yields inferior clustering performance,
given the inadequately trained node representations. It only slightly
improves the clustering performance produced by autoencoder at 10th
epoch (labeled as a bold purple cross); (2) DDGC achieves a superior
performance despite the sub-optimal initial node presentations. This
is evident that DDGC can mitigate the reliance on the well-pretrained
encoder.

Appendix F. Additional ablation analysis

To provide a more detailed analysis regarding the effectiveness of
different components in different models, we developed DAEGC_ME,
a variant of DAEGC, by replacing the KL divergence regularizer in
DAEGC with the minimum entropy, and developed DDGC_KL by using
KL divergence as the regularizer in DDGC. The results illustrated in
Fig. 20 demonstrate that: (1) DDGC presents the most stable training
curve and converges faster. It clearly performs better than DDGC_KL,
which suffers severe fluctuations. We conclude that minimum entropy
fits better in the DDGC framework than KL divergence, as DDGC
is more likely to learn task-friendly representations for the graph
clustering, which helps to avoid the model collapse, due to the use
of a diversity centroids learning module. Therefore, DDGC performs
better with a more confident clustering assignment mechanism. In
comparison with KL divergence, minimum entropy provides a one-
hot-like assignment, which contributes to stable learning. (2) DAEGC
and DAEGC_ME present inferior performance than DDGC. However,
KL divergence fits better in the DAEGC framework, as KL divergence
offers a softer clustering assignment than minimum entropy, having
more chances to adjust the optimization direction needed in DAEGC.

Data availability

Data will be made available on request.

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
Fig. 20. The performance of DAEGC and DDGC with KL divergence or entropy module
w.r.t. iteration on Cora and Citeseer.

References

[1] Matthew B. Hastings, Community detection as an inference problem, Phys. Rev.
E 74 (3) (2006) 035102.

[2] Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Dongxiao He, Jia Wu, S. Yu
Philip, Weixiong Zhang, A survey of community detection approaches: From
statistical modeling to deep learning, IEEE Trans. Knowl. Data Eng. 35 (2) (2021)
1149–1170.

[3] Qi Xuan, Jinhuan Wang, Minghao Zhao, Junkun Yuan, Chenbo Fu, Zhongyuan
Ruan, Guanrong Chen, Subgraph networks with application to structural feature
space expansion, IEEE Trans. Knowl. Data Eng. 33 (6) (2021) 2776–2789.

[4] Su-Yeon Kim, Tae-Soo Jung, Eui-Ho Suh, Hyun-Seok Hwang, Customer segmen-
tation and strategy development based on customer lifetime value: A case study,
Expert Syst. Appl. 31 (1) (2006) 101–107.

[5] Nairouz Mrabah, Mohamed Bouguessa, Mohamed Fawzi Touati, Riadh Ksantini,
Rethinking graph auto-encoder models for attributed graph clustering, IEEE
Trans. Knowl. Data Eng. 35 (9) (2023) 9037–9053.

[6] Youpeng Hu, Xunkai Li, Yujie Wang, Yixuan Wu, Yining Zhao, Chenggang
Yan, Jian Yin, Yue Gao, Adaptive hypergraph auto-encoder for relational data
clustering, IEEE Trans. Knowl. Data Eng. 35 (3) (2021) 2231–2242.

[7] Yunxiao Zhao, Liang Bai, Contrastive clustering with a graph consistency
constraint, Pattern Recognit. 146 (2024) 110032.

[8] Yi Wen, Suyuan Liu, Xinhang Wan, Siwei Wang, Ke Liang, Xinwang Liu, Xihong
Yang, Pei Zhang, Efficient multi-view graph clustering with local and global
structure preservation, in: Abdulmotaleb El-Saddik, Tao Mei, Rita Cucchiara,
Marco Bertini, Diana Patricia Tobon Vallejo, Pradeep K. Atrey, M. Shamim
Hossain (Eds.), Proceedings of the 31st ACM International Conference on
Multimedia, MM 2023, Ottawa, on, Canada, 29 October 2023- 3 November 2023,
ACM, 2023, pp. 3021–3030.

[9] Ke Wang, Zanting Ye, Xiang Xie, Haidong Cui, Tao Chen, Banteng Liu, MLN-net:
A multi-source medical image segmentation method for clustered microcalci-
fications using multiple layer normalization, Knowl.-Based Syst. 283 (2024)
111127.

[10] Feng Zhao, Zhilei Xiao, Hanqiang Liu, Zihan Tang, Jiulun Fan, A knee point
driven kriging-assisted multi-objective robust fuzzy clustering algorithm for
image segmentation, Knowl.-Based Syst. 271 (2023) 110522.

[11] Jean-Paul Ainam, Ke Qin, Jim Wilson Owusu, Guoming Lu, Unsupervised domain
adaptation for person re-identification with iterative soft clustering, Knowl.-Based
Syst. 212 (2021) 106644.

[12] Chunteng Bao, Diju Gao, Yi Ding, Lihong Xu, Erik D. Goodman, Many-task
evolutionary algorithm with adaptive knowledge transfer via density-based
clustering, Knowl.-Based Syst. 278 (2023) 110906.

[13] Qing Tian, Jixin Sun, Cluster-based dual-branch contrastive learning for unsuper-
vised domain adaptation person re-identification, Knowl.-Based Syst. 280 (2023)
111026.

[14] Rongkai Xia, Yan Pan, Lei Du, Jian Yin, Robust multi-view spectral clustering
via low-rank and sparse decomposition, in: Carla E. Brodley, Peter Stone (Eds.),
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July
27 -31, 2014, QuÉbec City, QuÉbec, Canada, AAAI Press, 2014, pp. 2149–2155.
15
[15] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, Tie-Yan Liu, Learning deep represen-
tations for graph clustering, in: Carla E. Brodley, Peter Stone (Eds.), Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31,
2014, QuÉbec City, QuÉbec, Canada, AAAI Press, 2014, pp. 1293–1299.

[16] Yann LeCun, Yoshua Bengio, Geoffrey E. Hinton, Deep learning, Nat. 521 (7553)
(2015) 436–444.

[17] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, Graph attention networks, 2017, arXiv preprint arXiv:
1710.10903.

[18] Hui Xia, Shu-shu Shao, Chunqiang Hu, Rui Zhang, Tie Qiu, Fu Xiao, Robust clus-
tering model based on attention mechanism and graph convolutional network,
IEEE Trans. Knowl. Data Eng. 35 (5) (2023) 5203–5215.

[19] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, Chengqi Zhang, Ad-
versarially regularized graph autoencoder for graph embedding, in: Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, 2018.

[20] Han Zhao, Xu Yang, Zhenru Wang, Erkun Yang, Cheng Deng, Graph debiased
contrastive learning with joint representation clustering, in: Zhi-Hua Zhou
(Ed.), Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021,
ijcai.org, 2021, pp. 3434–3440.

[21] Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey E. Hinton, A simple
framework for contrastive learning of visual representations, in: Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, in: Proceedings of Machine Learning Research, vol. 119,
PMLR, 2020, pp. 1597–1607.

[22] Feiping Nie, Ziheng Li, Rong Wang, Xuelong Li, An effective and efficient
algorithm for K-means clustering with new formulation, IEEE Trans. Knowl. Data
Eng. 35 (4) (2023) 3433–3443.

[23] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, Jin Young Choi,
Symmetric graph convolutional autoencoder for unsupervised graph representa-
tion learning, in: 2019 IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, IEEE, 2019,
pp. 6518–6527.

[24] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Chengqi Zhang,
Attributed graph clustering: A deep attentional embedding approach, in: Sarit
Kraus (Ed.), Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, ijcai.org,
2019, pp. 3670–3676.

[25] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, Peng Cui, Structural
deep clustering network, in: Yennun Huang, Irwin King, Tie-Yan Liu, Maarten
van Steen (Eds.), WWW ’20: The Web Conference 2020, Taipei, Taiwan, April
20-24, 2020, ACM / IW3C2, 2020, pp. 1400–1410.

[26] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, En Zhu,
Jieren Cheng, Deep fusion clustering network, in: Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative
Applications of Artificial Intelligence, IAAI 2021, the Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, AAAI Press, 2021, pp. 9978–9987.

[27] Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang,
En Zhu, Deep graph clustering via dual correlation reduction, in: Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2022, the Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, AAAI Press, 2022, pp. 7603–7611.

[28] Thomas N. Kipf, Max Welling, Variational graph auto-encoders CoRR,
abs/1611.07308, 2016.

[29] Pengwei Hu, Keith C.C. Chan, Tiantian He, Deep graph clustering in social
network, in: Rick Barrett, Rick Cummings, Eugene Agichtein, Evgeniy Gabrilovich
(Eds.), Proceedings of the 26th International Conference on World Wide Web
Companion, Perth, Australia, April 3-7, 2017, ACM, 2017, pp. 1425–1426.

[30] Shaosheng Cao, Wei Lu, Qiongkai Xu, Deep neural networks for learning graph
representations, in: Dale Schuurmans, Michael P. Wellman (Eds.), Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA, AAAI Press, 2016, pp. 1145–1152.

[31] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, Jing Jiang, MGAE:
Marginalized graph autoencoder for graph clustering, in: Ee-Peng Lim, Marianne
Winslett, Mark Sanderson, Ada Wai-Chee Fu, Jimeng Sun, J. Shane Culpepper,
Eric Lo, Joyce C. Ho, Debora Donato, Rakesh Agrawal, Yu Zheng, Carlos Castillo,
Aixin Sun, Vincent S. Tseng, Chenliang Li (Eds.), Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, CIKM 2017,
Singapore, November 06 - 10, 2017, ACM, 2017, pp. 889–898.

[32] Jinyu Cai, Yi Han, Wenzhong Guo, Jicong Fan, Deep graph-level clustering
using pseudo-label-guided mutual information maximization network CoRR,
abs/2302.02369, 2023, arXiv:2302.02369.

[33] Barakeel Fanseu Kamhoua, Lin Zhang, Kaili Ma, James Cheng, Bo Li, Bo Han,
GRACE: A general graph convolution framework for attributed graph clustering,
ACM Trans. Knowl. Discov. Data 17 (3) (2023) 31:1–31:31.

[34] Shuiqiao Yang, Sunny Verma, Borui Cai, Jiaojiao Jiang, Kun Yu, Fang Chen,
Shui Yu, Variational co-embedding learning for attributed network clustering,
Knowl.-Based Syst. 270 (2023) 110530.

http://refhub.elsevier.com/S0950-7051(25)00369-7/sb1
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb1
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb1
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb2
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb2
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb2
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb2
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb2
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb2
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb2
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb3
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb3
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb3
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb3
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb3
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb4
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb4
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb4
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb4
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb4
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb5
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb5
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb5
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb5
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb5
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb6
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb6
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb6
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb6
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb6
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb7
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb7
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb7
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb8
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb9
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb9
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb9
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb9
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb9
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb9
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb9
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb10
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb10
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb10
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb10
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb10
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb11
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb11
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb11
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb11
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb11
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb12
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb12
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb12
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb12
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb12
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb13
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb13
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb13
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb13
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb13
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb14
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb14
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb14
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb14
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb14
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb14
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb14
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb15
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb15
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb15
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb15
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb15
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb15
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb15
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb16
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb16
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb16
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb18
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb18
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb18
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb18
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb18
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb19
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb19
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb19
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb19
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb19
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb19
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb19
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb20
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb20
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb20
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb20
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb20
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb20
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb20
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb20
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb20
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb21
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb21
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb21
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb21
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb21
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb21
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb21
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb21
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb21
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb22
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb22
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb22
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb22
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb22
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb23
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb23
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb23
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb23
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb23
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb23
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb23
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb23
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb23
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb24
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb24
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb24
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb24
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb24
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb24
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb24
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb24
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb24
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb25
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb25
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb25
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb25
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb25
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb25
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb25
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb26
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb26
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb26
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb26
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb26
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb26
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb26
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb26
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb26
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb26
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb26
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb27
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb27
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb27
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb27
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb27
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb27
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb27
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb27
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb27
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb27
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb27
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb28
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb28
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb28
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb29
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb29
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb29
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb29
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb29
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb29
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb29
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb30
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb30
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb30
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb30
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb30
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb30
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb30
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb31
http://arxiv.org/abs/2302.02369
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb33
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb33
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb33
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb33
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb33
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb34
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb34
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb34
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb34
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb34

P. Zhao et al. Knowledge-Based Systems 317 (2025) 113322
[35] Ruina Bai, Ruizhang Huang, Yongbin Qin, Yanping Chen, Yong Xu, A struc-
tural consensus representation learning framework for multi-view clustering,
Knowl.-Based Syst. 283 (2024) 111132.

[36] Zhiwen Cao, Xijiong Xie, Feixiang Sun, Jiabei Qian, Consensus cluster structure
guided multi-view unsupervised feature selection, Knowl.-Based Syst. 271 (2023)
110578.

[37] Renjie Lin, Shide Du, Shiping Wang, Wenzhong Guo, Multi-view clustering via
optimal transport algorithm, Knowl.-Based Syst. 279 (2023) 110954.

[38] Xin Zou, Chang Tang, Xiao Zheng, Kun Sun, Wei Zhang, Deqiong Ding, Inclusivity
induced adaptive graph learning for multi-view clustering, Knowl.-Based Syst.
267 (2023) 110424.

[39] Jing Liu, Fuyuan Cao, Xuechun Jing, Jiye Liang, Deep multi-view graph cluster-
ing network with weighting mechanism and collaborative training, Expert Syst.
Appl. 236 (2024) 121298.

[40] Hui-Jia Li, Yuhao Feng, Chengyi Xia, Jie Cao, Overlapping graph clustering in
attributed networks via generalized cluster potential game, ACM Trans. Knowl.
Discov. Data 18 (1) (2024) 27:1–27:26.

[41] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, J. R. Stat. Soc. Ser. B Stat. Methodol. 39 (1) (1977)
1–22.

[42] Dilin Wang, Qiang Liu, Nonlinear stein variational gradient descent for learning
diversified mixture models, in: Kamalika Chaudhuri, Ruslan Salakhutdinov (Eds.),
Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, in: Proceedings of Machine
Learning Research, vol. 97, PMLR, 2019, pp. 6576–6585.

[43] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, Stephan Gün-
nemann, Pitfalls of graph neural network evaluation, CoRR abs/1811.05868,
2018.

[44] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, Edward Y. Chang, Network
representation learning with rich text information, in: Qiang Yang, Michael J.
Wooldridge (Eds.), Proceedings of the Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, AAAI Press, 2015, pp. 2111–2117.

[45] Zhihao Peng, Hui Liu, Yuheng Jia, Junhui Hou, Attention-driven graph clustering
network, in: Heng Tao Shen, Yueting Zhuang, John R. Smith, Yang Yang, Pablo
César, Florian Metze, Balakrishnan Prabhakaran (Eds.), MM ’21: ACM Multimedia
Conference, Virtual Event, China, October 20 - 24, 2021, ACM, 2021, pp.
935–943.
16
[46] Xiaxia He, Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin,
Parallelly adaptive graph convolutional clustering model, IEEE Trans. Neural
Netw. Learn. Syst. (2022).

[47] Zhihao Peng, Hui Liu, Yuheng Jia, Junhui Hou, Deep attention-guided graph
clustering with dual self-supervision, IEEE Trans. Circuits Syst. Video Technol.
33 (7) (2023) 3296–3307.

[48] László Lovász, Michael D. Plummer, Matching Theory, vol. 367, American
Mathematical Soc., 2009.

[49] Laurens Van der Maaten, Geoffrey Hinton, Visualizing data using t-SNE, J. Mach.
Learn. Res. 9 (11) (2008).

[50] T. Konstantin Rusch, Michael M. Bronstein, Siddhartha Mishra, A survey on
oversmoothing in graph neural networks, CoRR abs/2303.10993, 2023.

[51] T. Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra,
Michael M. Bronstein, Graph-coupled oscillator networks, in: Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, Sivan Sabato (Eds.),
International Conference on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA, in: Proceedings of Machine Learning Research, vol.
162, PMLR, 2022, pp. 18888–18909.

[52] Lingxiao Zhao, Leman Akoglu, PairNorm: Tackling oversmoothing in GNNs, in:
8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020, OpenReview.net, 2020.

[53] Chen Cai, Yusu Wang, A note on over-smoothing for graph neural networks,
CoRR abs/2006.13318, 2020.

[54] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, Xu Sun, Measuring and relieving
the over-smoothing problem for graph neural networks from the topological
view, in: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, the Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, the Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
AAAI Press, 2020, pp. 3438–3445.

[55] Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, Xia Hu,
Towards deeper graph neural networks with differentiable group normalization,
in: Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
Hsuan-Tien Lin (Eds.), Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, Virtual, 2020.

http://refhub.elsevier.com/S0950-7051(25)00369-7/sb35
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb35
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb35
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb35
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb35
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb36
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb36
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb36
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb36
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb36
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb37
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb37
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb37
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb38
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb38
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb38
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb38
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb38
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb39
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb39
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb39
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb39
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb39
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb40
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb40
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb40
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb40
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb40
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb41
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb41
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb41
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb41
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb41
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb42
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb42
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb42
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb42
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb42
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb42
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb42
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb42
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb42
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb43
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb43
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb43
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb43
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb43
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb44
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb44
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb44
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb44
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb44
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb44
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb44
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb44
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb44
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb45
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb45
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb45
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb45
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb45
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb45
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb45
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb45
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb45
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb46
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb46
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb46
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb46
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb46
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb47
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb47
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb47
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb47
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb47
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb48
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb48
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb48
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb49
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb49
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb49
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb50
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb50
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb50
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb51
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb51
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb51
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb51
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb51
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb51
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb51
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb51
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb51
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb51
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb51
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb52
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb52
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb52
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb52
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb52
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb53
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb53
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb53
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb54
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb55
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb55
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb55
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb55
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb55
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb55
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb55
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb55
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb55
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb55
http://refhub.elsevier.com/S0950-7051(25)00369-7/sb55

	Sharpening deep graph clustering via diverse bellwethers
	Introduction
	Related Work
	Two-step Methods
	Fine-tuning Methods

	Proposed Model
	Seeking Diverse Bellwethers
	Sharpening Clustering Assignment
	Proposed ME-based clustering loss
	A gradient comparison between the ME- and KL-based clustering loss

	The Whole Framework
	Complexity Analysis

	Experiments
	Benchmark Datasets and Baselines
	Experiment Setup
	Overall Performance
	Ablation Analysis
	Cluster Visualization
	Analysis of Stability to Pretraining
	Studies on Alleviating the Over-smoothing Problem
	Hyperparameter Analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Difference between Centroids and Bellwethers
	Appendix B. Over-smoothing
	Over-smoothing on graph clustering
	Dirichlet Energy and Mean Average Distance

	Appendix C. Analysis of Hyperparameters
	Analysis of h in RBF Kernel
	Analysis of T, a and b
	Analysis of diversity coefficient α

	Appendix D. Analysis of Dynamic Coefficient
	Appendix E. Additional Analysis of Stability
	Appendix F. Additional Ablation Analysis
	Data availability
	References

